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The stepwise transition in the coaxial waveguide is calculated by the integral equation method. To 

solve the problem, the entire region of field definition is conditionally divided into three partial areas for 

which the field components are recorded. A system of equations is obtained that allows one to calculate the 

reflection coefficient of a T-wave from this homogeneity. The geometric dimensions of the waveguide, which 

provide the minimum value of the reflection coefficient, are given. 
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1. Introduction 

Let us consider abrupt changes in the cross-section of a coaxial line. Let the diameter of 

the outer conductor be not changed. In this case, the diameter of the inner conductor abruptly 

increases from 0r  to 1r . Then the wave impedance of the coaxial line decreases from 1Z  to 

2Z . Such a section of the coaxial line can be considered as a four-terminal network, which 

contains two segments of the coaxial line 1a  and 2a  having wave impedances 1Z  and 2Z . A 

change in the structure of the electric field is equivalent to the inclusion of a concentrated 

capacitance C  between these segments.  

Let the diameter of the inner conductor be not changed. In this case, the diameter of the 

outer conductor increases stepwise from 2r  to 3r . Then the wave impedance in this section 

decreases stepwise from 1Z  to 2Z . A change in the structure of the electric field is equivalent 

to the inclusion of a concentrated capacitance C  between these segments.  

Consider a non-reflective change in the cross-section of the coaxial line. Fig. 1 shows 

the simplest way to maintain the constancy of the wave impedance of a line when its cross-

section changes. To maintain a constant wave drag along the line, it is necessary that 
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= . The structure of the magnetic field in the region of the diameter jump remains 

unchanged. The distortion of the electric field structure in the region of the size jump can be 

taken into account by introducing parallel capacitance C  into the equivalent circuit. To 

expand the working frequency band, the influence of stray capacitance C  is compensated by 

sequentially switching the inductive reactance. Serial inductance can be obtained by shifting 

the planes in which the diameters of the outer and inner conductor of the coaxial line abruptly 

change by an amount l  (Fig. 2). With this displacement, a part of the thin inner conductor 

falls inside the coaxial line, which has a larger diameter of the outer conductor. The value of 

the capacitance C  decreases and such an inhomogeneity of the line behave as an additional 

series inductance. 

A number of papers consider the propagation of electromagnetic waves in an 

inhomogeneous coaxial waveguide [1-6]. In [1], the analysis of inhomogeneities in a coaxial 

waveguide was carried out on the basis of telegraph equations.  

In [2], a model of the propagation of electromagnetic waves in inhomogeneous lossy 

coaxial cables is considered. In this paper, an asymptotic analysis of the “homogenized” 

telegraph model in the time domain is used. 

In [3], a theoretical study of wave propagation in a nanometric coaxial waveguide in a 

real metal is presented.
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The electrodynamic characteristics of simple inhomogeneities in multimode circular 

and coaxial waveguides are considered in the paper [4]. In [5-6], for the analysis of 

coaxial waveguides, the finite difference time domain method is used. 

This review shows that there is a need to consider this heterogeneity in a coaxial 

waveguide using classical electrodynamics methods [7-8]. 

 

 
Fig.1. An abrupt change in the cross-section of 

the line while maintaining the value of the line 

impedance. 

Fig. 2. An abrupt change in the cross-section of the 

line that does not create reflections. 

2. Formulation of the problem 

To solve the problem of electromagnetic field diffraction in a stepwise transition in a 

coaxial waveguide, the entire field of field determination  

 is divided into partial regions 1, 2, 3 

(Fig. 2). 

Region 1: . Region 2: . Region 

3: .  

In region 1, the main T-wave is excited at a point −=z . From region 1, a T-wave 

falls on the inhomogeneity in the line. The walls of the stepped coaxial transition are 

assumed to be perfectly conducting; the medium in the line is homogeneous and 

isotropic. The electromagnetic field in such a system will be completely described by the 

),( zH   field component.  

From the Maxwell equations we can obtain the following differential equation 

 
(1) 

where 3,2,1=  is the index that indicates the area number;  is the wave 

number. 

3. Integral equations for the electromagnetic field 

We solve equation (1) by the method of separation of variables 

. For a function   that depends on the z coordinate, we obtain the 

following dependence: in the first region , in the second region 

, where  is the propagation constant. When finding a function , two 

cases are possible.  

1. When , we have that ; . Then 

we obtain for the 1st region  
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.  

Similarly, for the 2nd region, we can obtain  

.  

2. When , we get a solution for the 1st region  

  

where ; 3,2,1=n .  

For the 2nd region 

  

where ; 3,2,1=n . 

To determine the own numbers n1 , we use the equation  

.  

To apply the integral equation method, it is necessary to construct the Green functions of 

the selected regions. We will use the “source-like” representation for the Green function:  

;  

;  

.  

As functions )(mZ  and )'(mZ , we choose orthonormal systems of eigenfunctions of a 

coaxial waveguide  

;  

;  

.  

Here ;  

; . 

Expressions for functions )( 21  mZ  and )( 31  mZ  are got like )( 11  mZ . 
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Functions )',( zzfm  are one-dimensional Green functions of the selected regions and 

have the following form:  

;  

;  

;  

; .  

Differential equation (1) can be rewritten as follows: 

. (2) 

The Green's function of a differential equation is the solution of this equation with the  -

function in the right-hand side  

 
(3) 

To solve by the integral equation method, we multiply equation (2) by )',',,( zzG  , and 

equation (3) by ),( zH  . Then subtract the second equation from the third equation. We 

multiply the resulting equation by dzdd   and integrate over the volume V, then we 

use the second Green theorem. As a result, we obtain three integral equations for the 

magnetic field strength at the internal points of the selected regions: 

 

(4) 

 

(5) 

The system of Fredholm integral equations of the second kind (4) – (6) allows us to 

determine the fields in separate regions from a given external field ),( zHexc   and Green's 

functions. Having eliminated the field ),(3 zH   in equations (4) and (5) using (6), we 

obtain a system of integral equations that connect the fields in 1 and 2 regions. We will 

look for a solution in the form of a series expansion in eigenfunctions  

; (7) 

; (8) 
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. 

Here kA  and kB  are the unknown coefficients of the scattering matrix.  

Let us consider equation (6) and find the derivatives  и . 

We substitute these derivatives and expressions for the Green's functions into equation 

(6). After some transformations, we obtain the expression for the magnetic field strength 

.  

Let us consider equation (4) and take derivatives  и . We 

substitute the found derivatives and the expression for the Green's function into equation 

(4). After some transformations, we obtain the expression for the magnetic field strength 

),(1 zH  . We substitute in the found expression for the magnetic field ),(1 zH   equation 

(7), multiply the right and left sides of the resulting expression by )( 11  mZ  and 

integrate from 0r  to 2r . We equate the coefficients for the same functions, thus getting 

the expression for pA . Carrying out similar actions with equation (5), we obtain the 

expression for pB .  

Thus, the system of linear algebraic equations for the unknown coefficients of the 

multiwave scattering matrix has the form: 
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where 

; 

; 
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; 

; 

; 

; 

; 

. 

From equations (9) and (10), it can be seen that the inhomogeneities caused by the 

change in the cross- section of the line in the planes 0=z  and lz =  are non-interacting. 

The magnitude of the bias lz =  is determined only by the need to reduce the magnitude 

C  and the creation of a consistent inductive reactance.  

In practice, the case may occur when 21 rr  . That is, the diameter of the larger of 

the inner conductors exceeds the diameter of the smaller of the outer conductors. In this 

case, we obtain such a system of linear algebraic equations for the unknown coefficients 

of the multiwave scattering matrix: 

                                 

; 

 

(11) 
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(12) 

 

 

Calculation of non-reflective step transition in a coaxial waveguide is carried out 

(Fig. 3). The calculations are performed for the ratio   . These 

calculations allow you to choose the size of the displacement, which provides the 

minimum value of the reflection coefficient from stepwise inhomogeneity. 

 

 
Fig.3. Geometrical dimensions of a step transition providing a minimum of reflection coefficient 

 

3. Conclusions 

In this paper, inhomogeneities in the form of spasmodic cross-sectional dimensions 

in a coaxial waveguide are considered.  

Using the integral equation method, a stepwise coaxial transition is calculated that 

minimizes the magnitude of the T-wave reflection coefficient. It is shown that 

inhomogeneities caused by a change in the cross-section of the line are not interacting. 

Calculations results are presented that make it possible to choose the optimal 

geometric dimensions of such an inhomogeneity.  
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