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1. Introduction
The phase structure of hot and dense hadronic matter have attracted considerable interest

in recent years and is a subject of active research [1, 2]. In these regimes the QCD motivated
effective models and lattice simulations indicate that the chiral symmetry restoration and the
deconfinement phase transition should take place at high temperatures. In particular, the knowl­
edge of the phase structure of themeson systems, in the regime of finite temperatures and isotope
spin (isospin) densities is crucial for understanding of a wide range of phenomena from nucleus­
nucleus collisions to neutron stars and cosmology. Meanwhile, studying the meson systems has
its own specifics: it is necessary to account for a possibility of the Bose­Einstein condensation
of interacting bosonic particles. Investigations of the properties of a dense and hot pion gas is
quite strongly inspired by the experiments at RHIC and LHC [3,4], where at midrapidity it was
discovered a formation of the medium with low baryon numbers.

The problem of the Bose­Einstein condensation of pi­mesons (K­mesons etc.) has been
studied previously, starting from the pioneer works of A.B. Migdal and coworkers [5–8] and
later by many authors using different models and methods. A possible formation of classical
pion fields in relativistic nucleus­nucleus collisions was discussed in refs. [9–12]. In more recent
studies [13–17], pionic systems with a finite isospin chemical potential and low temperatures
have been considered. First­principles lattice calculations provide a solid basis for our knowl­
edge of the finite temperature regime. New results concerning dense pionic systems have been
obtained recently using lattice methods [18, 19].

In the present paper we consider the system of bosons, which we name just conventionally
as “pions”. This preference is made because the charged π­mesons are the lightest hadrons that
couple to the isospin chemical potential. On the other hand, the pions are the lightest nuclear
boson particles and thus, an account for “temperature creation” of particle­antiparticle pairs is a
relevant problem on the basis of quantum­statistical approach. As a matter of fact, an effective
dynamics of the charged pions is described by chiral perturbation theory [13]. However, we
investigate the self­interacting many­boson system in the framework of thermodynamic mean­
field approach and we consider the present studies as a toy­model which can help us to under­
stand the processes of the Bose­Einstein condensation and phase transitions in the wide range
of temperatures and densities.
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The investigation presented is, in some sense, a development of the approach proposed
in ref. [20], where the boson system was considered in the framework of the Grand Canonical
Ensemble at zero chemical potential. Here, we investigate thermodynamic properties of the
interacting particle­antiparticle boson system in the Canonical Ensemble at the conserved isospin
density nI and finite temperature T , which are now the canonical variables for thermodynamic
quantities. To account for the interaction between the bosons we introduce a phenomenological
Skyrme­like mean fieldU(n), which depends only on the total meson density n. This mean field
rather reflects the presence of other strongly interacting particles in the system, for instance ρ­
mesons and nucleon­antinucleon pairs at low temperatures or gluons and quark­antiquark pairs
at high temperatures, T > Tqgp ≈ 160 MeV. Calculations for noninteracting hadron resonance
gas show that the particle densities may reach values (0.1 − 0.2) fm−3 at temperatures 100 −
160MeV, which are below the deconfinement phase transition, see e.g. refs. [21, 22].

In this work in the Canonical Ensemble formulation we calculate thermodynamic charac­
teristics of the non­ideal hot “pion” gas with fixed isospin density nI = n

(−)
π − n

(+)
π > 0. In

Sect. 2 we develop a formalism of the thermodynamic mean­field model [23] for description
of a bosonic system of particles and antiparticles which will be used in the presented calcula­
tions. In Sect. 3 we introduce a Skyrme­like parametrization of the mean field and calculate
corresponding thermodynamic functions. In Sect. 4 we demonstrate the possibility of the Bose
condensation when the attractive interaction is “weak”. Our conclusions are summarized in
Sect. 5.

2. The mean­field model for the system of boson particles and antiparticles
Our consideration in this section is based on the thermodynamic mean­field model which

was introduced in refs. [24, 25], and then developed in ref. [23]. The basic derivations of the
model are present in Appendix.

We limit our consideration to the case where at a fixed temperature the interacting boson
particles and boson antiparticles are in the dynamical equilibriumwith respect to annihilation and
pair­creation processes. The chemical potentials of boson particles µp and boson antiparticles
µp̄ are then, have opposite signs:

µp = −µp̄ ≡ µ . (1)

We are going to consider the system of boson particles and boson antiparticles at conserved
isospin numberNI ≡ N (−)−N (+), whereN (−) is the number of boson particles andN (+) is the
number of boson antiparticles. The total number of mesons in the system isN = N (−)+N (+).
Therefore, the Euler relation includes isospin number density only:

ε + p = T s + µnI , (2)

where nI = NI/V with V as the volume of the system, and the total particle­number density is
n = n(−) + n(+).

Roughly speaking, in such a problem the chemical potential controls the difference of par­
ticle and antiparticle numbers µ → (N (−) − N (+)) whereas the total number of particles
is controlled by the temperature T → (N = N (−) + N (+)). Indeed, if some amount of
particle­antiparticle pairs M has been created additionally to the existing particles N (−) and
N (+) in a closed system, then approximately the same value µ is in correspondence µ →
[(N (−) + M) − (N (+) + M)] but T ′ → (N (−) + M + N (+) + M), where T ′ > T . This
qualitative consideration indicates the existence of one to one correspondence of independent
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pairs of variables (T, µ) ⇔ (N, NI). Actually, it is an easy task to show that the latter statement
is valid in ideal quantum gas of particles and antiparticles. Meanwhile, it is not so simple the
rigorous proof of the independence of thermodynamic variables n and nI in a more general case
where the mean fields, which depend on these variables, are present in the system (see [26]).

In general the mean field U depends on both independent variables n, nI , i.e. U(n, nI).
On the other hand, as proved in [26], the mean field can be separated into n­dependent and
nI ­dependent pieces where then, it reads respectively for particles and antiparticles as

U (−)
(
n, nI

)
= U(n)− UI

(
nI

)
, (3)

U (+)
(
n, nI

)
= U(n) + UI

(
nI

)
. (4)

These signs in eqs. (3) and (4) are due to odd dependence on the isospin number nI .
The total pressure in the two­component system reads

p = − gT

∫
d3k

(2π)3
ln

[
1− exp

(
−
√
m2 + k2 + U(n)− UI(nI)− µ

T

)]
−

− gT

∫
d3k

(2π)3
ln

[
1− exp

(
−
√
m2 + k2 + U(n) + UI(nI) + µ

T

)]
+ P (n, nI), (5)

where P (n, nI) is the excess pressure. Here and below we adopt the system of units h̄ = c = 1,
kB = 1.

At the first step of investigation we neglect that part of the mean field which depends
on isospin density, i.e. we assume UI(nI) = 0. Therefore, in this approximation, the excess
pressure also depends only on the total particle­number density, P (n).

The thermodynamic consistency of the mean­field model can be obtained by putting in
correspondence of two expressions which must coincide in the result. These expressions, which
determine the isospin density, read

nI =

(
∂p

∂µ

)
T

, (6)

where pressure is given by Eq.(5), and

nI = g

∫
d3k

(2π)3
[
f
(
E(k, n), µ

)
− f

(
E(k, n),−µ

)]
. (7)

Here E(k, n) = ωk + U(n) with ωk =
√
m2 + k2 and the Bose­Einstein distribution function

reads

f
(
E, µ

)
=

[
exp

(
E − µ

T

)
− 1

]−1

. (8)

In order the expressions (6) and (7) to coincide in the result the following relation between the
mean field and the excess pressure arises

n
∂U(n)

∂n
=

∂P (n)

∂n
. (9)

It provides the thermodynamic consistency of the model. When both components of π−­π+
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system are in the thermal (kinetic) phase the pressure and energy density read

p =
g

3

∫
d3k

(2π)3
k2

ωk

[
f
(
E(k, n), µ

)
+ f

(
E(k, n),−µ

)]
+ P (n) , (10)

ε = g

∫
d3k

(2π)3
ωk

[
f
(
E(k, n), µ

)
+ f

(
E(k, n),−µ

)]
+ nU(n) − P (n) . (11)

3. Skyrme­like parametrization of the mean field
The thermodynamic mean­field model has been applied for several physically interesting

systems including the hadron­resonance gas [23] and the pionic gas [27]. This approach was
extended to the case of a bosonic system atµ = 0which can undergo Bose condensation [20,28].
In the present study a generalized formalism given in section 2 is used to describe the particle­
antiparticle system of bosons when the isospin density is kept constant. As was mentioned in
the previous section the mean field in general case splits into two pieces with dependence on the
total particle density n and on the isospin density nI , respectively, see eqs. (3) and (4). At the
first stage of our investigation we assume that the interaction between particles is described by
the Skyrme­like mean field which depends only on the total particle­number density n. Loosely
speaking we take into account just a strong interaction. So, we assume that the mean field reads

U(n) = −An + B n2 , (12)

whereA andB are the model parameters, which should be specified. Some additional contribu­
tion to the attractive mean field at high temperatures, (T ∝ 100− 160MeV), may be provided
by other hadrons present in the system, like ρ­mesons [29] or baryon­antibaryon pairs [30]. As
was mentioned in the introduction, an investigation of the properties of a dense and hot pion gas
is well inspired by formation of the medium with low baryon numbers at midrapidity what was
proved in the experiments at RHIC and LHC [3,4].

By this reason, in our calculations we consider a general case of A > 0, to study a bosonic
system with both attractive and repulsive contributions to the mean field (12). For the repulsive
coefficientB we use a fixed value, obtained from an estimate based on the virial expansion [31],
B = 10mv20 with v0 equal to four times the proper volume of a particle, i.e. v0 = 16πr30/3.
In our numerical calculations we take v0 = 0.45 fm3 that corresponds to a “particle radius”
r0 ≈ 0.3 fm. The numerical calculations will be done for bosons with mass m = 139 MeV,
which we call “pions”. In this case the repulsive coefficient is B/m = 2.025 fm−6 and it is
kept constant through all present calculations. (For instance, in Ref. [32] authors use the value
B/m = 21.6 fm−6.) At the same time the coefficient A, which determines the intensity of
attraction of the mean field (12), will be varied. It is advisable to parameterize the coefficient
A. We are going to do this with making use of solutions of equation U(n) +m = 0, similar to
parametrization adopted in refs. [20, 28]. For the given mean field (12) there are two roots of
this equation (n1,2 = (A∓

√
A2 − 4mB)/2B)

n1 =

√
m

B

(
κ−

√
κ2 − 1

)
, n2 =

√
m

B

(
κ+

√
κ2 − 1

)
, (13)

where
κ ≡ A

2
√
mB

. (14)
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Then, one can parameterize the attraction coefficient as A = κAc with Ac = 2
√
mB. As we

show further, the dimensionless parameter κ is a scaling parameter of the model, i.e. when the
isospin density is a constant the parameter κ determines the phase structure of the system. As it
is seen from eq. (13) for the values of parameter κ < 1 there are no real roots. The critical value
of parameter A is obtained when both roots coincide, i.e. when κ = 1, then A = Ac = 2

√
mB.

We consider two intervals of the parameter κ. 1) First interval corresponds to κ ≤ 1, there are
no real roots of equationU(n)+m = 0. We associate these values of κwith a “weak” attractive
interaction and in the present study we consider variations of the attractive coefficientA just for
values of κ from this interval. 2) Second interval corresponds to κ > 1, there are two real roots
of equation U(n) + m = 0. We associate this interval with a “strong” attractive interaction.
This case will be considered elsewhere.

If one assumes a possibility of the Bose­Einstein condensation in the two­component sys­
tem, then it is instructive to classify a phase structure of the system in accordance with two basic
combinations which determine for the “weak” attraction the different thermodynamic states: (i)
Both components, or the boson particles and boson antiparticles, i.e. π− and π+, are in the ther­
mal (kinetic) phase; (ii) Particles (π−) are in the condensate phase and antiparticles (π+) are in
the thermal (kinetic) phase ­ this combination can be named as the “cross” state.

It is necessary to note, that expression “particles are in the condensate phase” is, of course,
a conventional one, because in the essence it is a mixture phase, where at a fixed temperature
some fraction of particles, i.e. a fraction of π−­mesons, is in thermal states with momentum
|k| > 0 and other fraction of this π−­component belongs to the Bose­Einstein condensate,
where all π−­mesons have zero momentum, k = 0.

We are going now to consider these basic thermodynamic states of the system using the
mean field (12).

4. Thermodynamic properties of
the bosonic particle­antiparticle system at “weak attraction”

In the mean­field approach the behavior of the particle­antiparticle bosonic system in ther­
mal (kinetic) phase is determined by the set of two transcendental equations (we keepnI = const)

n =

∫
d3k

(2π)3
[
f
(
E(k, n), µ

)
+ f

(
E(k, n),−µ

)]
, (15)

nI =

∫
d3k

(2π)3
[
f
(
E(k, n), µ

)
− f

(
E(k, n),−µ

)]
, (16)

where the Bose­Einstein distribution function f
(
E, µ

)
is defined in (8) and E(k, n) = ωk +

U(n). Equations (15)­(16) should be solved selfconsistently with respect to n and µ for a given
temperature T with account for nI = const. In the present we consider bosonical system in the
Canonical Ensemble, where the independent canonical variables are T and nI , particles spin
equal to zero. In this approach the chemical potential µ is a thermodynamic variable which
depends on the canonical variables, i.e. µ(T, nI).

In case of the cross state, when the particles, i.e. π−­mesons, are in the condensate phase
and antiparticles are still in the thermal (kinetic) phase, eqs. (15), (16) should be generalized to
include condensate component n(−)

cond. Besides this we should take into account that the particles
(π− or high­density component) can be in condensed state just under the necessary condition

U(n) − µ = −m. (17)
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During decreasing of temperature from high values, where both π− and π+ are in the thermal
phase, the density of π−­component n(−)(T, µ) (high­density component) achieves first the
critical curve at temperature T

(−)
c , where condition (17) is valid. This means that the curve

n
(id)
lim (T ), which is defined as

n
(id)
lim (T ) =

∫
d3k

(2π)3
f
(
ωk, µ

)∣∣∣
µ=m

, (18)

is the critical curve for π−­mesons or for high­density component. Here f(ωk, µ) is the Bose­
Einstein distribution function defined in (8). As we see function (18) represents the maximal
density of thermal (kinetic) boson particles of the ideal gas at temperature T when µ = m.
Hence, we obtain that the critical curve in the mean­field approach under consideration for the
boson particles coincides with the critical curve for the ideal gas.

With account for eqs. (17) and (18) we write the generalization of the set of eqs. (15), (16)

n = n
(−)
cond(T ) + n

(id)
lim (T ) +

∫
d3k

(2π)3
f
(
E(k, n),−µ

)
, (19)

nI = n
(−)
cond(T ) + n

(id)
lim (T )−

∫
d3k

(2π)3
f
(
E(k, n),−µ

)
; (20)

Meanwhile, because of relation (17) between themean field and chemical potential, i.e. E(k, n)−
µ = ωk −m, this set of equations can be reduced just to one equation with respect to n(+) and
it reads

n(+) =

∫
d3k

(2π)3
f
(
E(k, n),−µ

)∣∣∣
µ=U(n)+m

with E(k, n) = ωk + U
(
2n(+) + nI

)
.

(21)
Solution of eq. (21) for temperatures T from the interval T < T

(−)
c provides the density n(+)(T )

of π+­mesons.
One can see from eqs. (19), (20) that the particle density n(+) is provided only by thermal

(kinetic) antiparticles (π+­mesons). Whereas, the densityn(−) of π−­mesons is provided by two
fractions: (1) the condensed particles (π−­mesons at k = 0) with the particle­number density
n
(−)
cond(T ), and (2) thermal π

−­mesons at |k| > 0 with the particle­number density n(id)
lim (T ). The

particle­density sum rule for these phase of π−­mesons in the interval T < T
(−)
c reads

n(−) = n
(−)
cond(T ) + n

(id)
lim (T ) . (22)

4.1. Numerical calculations

At high temperatures, i.e. T ≥ T
(−)
c , both components of the bosonic particle­antiparticle

system are in the thermal phase and thermodynamic properties of the system are determined by
the set of eqs. (15) and (16). Solving this set for given values T and nI we obtain the functions
µ(T, nI) and n(T, nI) and then other thermodynamic quantities.

When we decrease temperature, after crossing the value T = T
(−)
c the particles which

belong to the high­density component (or π−­mesons) start to “drop down” into the condensate
state, which is characterized by the value of momentum k = 0. In the limit, when T = 0, all
particles of the high­density component n(−), i.e. π−­mesons, are in condensed state. At the
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Fig. 1. Left panel: The particle­number densities n(+), n(−) and ntot = n(+) + n(−) versus temperature for
the interacting π+­π− pion gas in the mean­field Skyrme­like model. The total isotope­spin density (which
kept constant) is nI = 0.1 fm−3 and attraction parameter is κ = 0.5. The maximal density n(id)

lim of the ideal
gas of thermal pions at µ = mπ depicted as red dashed line and the dashed area indicates the phase of
condensed particles. Diamond shows the temperature T (−)

c of bosonic condensation of π− pions. Right
panel: The same as in left panel but at parameter κ = 1.0, where n1 = n2 ≡ n1,2 and T1 = T2 ≡ T1,2.

same time, the particles of the low­density component or π+­mesons being in the thermal phase
lose the density n(+) with decrease of temperature and it becomes rigorously zero at T = 0.
For the temperature interval T < T

(−)
c equations (15), (16) should be generalized and now

thermodynamic properties of the system are determined by eq. (21), where we take into account
that µ = −U(n) + m for all temperatures of this interval unless the high­density component
n(−) is in condensed state. Otherwise it is necessary to solve the set of eqs. (15) and (16) for the
region where n(−) appears again in the thermal (kinetic) phase.

For parameters nI = 0.1 fm−3, κ = 0.5 and κ = 1.0 we solve the set of eqs. (15), (16) for
the thermal phase and eq. (21) for the “cross” thermodynamic state. The behavior of the density
n(+) of π+­mesons and the density n(−) of π−­mesons are depicted in Fig. 1. In this figure we
depicted as well the behavior of the total meson density n = n(+) + n(−) as functions of the
temperature (in the figure field it is notated as ntot).

Analyzing the behavior of the condensate creation (see Fig. 1) it is necessary to note, that
just high­density component of the particle­antiparticle gas undergoes the phase transition to the
Bose­Einstein condensate. If we apply our consideration to pion gas with nI = n

(−)
π −n

(+)
π > 0

this means that π−­component undergoes the phase transition to the Bose­Einstein condensate
and the low­density component or π+ mesons exist only in the thermal phase for whole range
of temperatures. Hence, it makes sense to look for the Bose­Einstein condensate of π− mesons
only in an experiment, for instance in heavy­ion collisions.

Equation (19) can be used to determine the critical temperature T (−)
c . Indeed, let us take

into account that at the crossing point with the critical curve the density of condensate is zero so
far, n(−)

cond
(
T
(−)
c
)
= 0, and the density of thermal π− particles becomes equal to n(−)

(
T
(−)
c
)
=

n
(id)
lim
(
T
(−)
c
)
. Then, at this temperature T = T

(−)
c on the l.h.s. of eq. (19) we have n =

2n
(id)
lim
(
T
(−)
c
)
− nI , and now at this temperature point on the critical curve eq. (19) with respect

to T reads as:
n
(id)
lim (T )− nI =

∫
d3k

(2π)3
f
(
E(k, n),−µ

)∣∣∣
µ=U(n)+m

. (23)
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Fig. 2. Left panel: The density of condensate versus temperature in the particle­antiparticle selfinteracting
system when the isospin density is kept constant, nI = 0.1 fm−3. The curves are marked by the attraction
parameter κ. Right panel: The chemical potential versus temperature at the values of attraction parameter
κ = 0.1, 0.5, 1.0. The open circles indicate the points, which correspond to the critical temperature T (−)

c ,
appropriate for corresponding parameter κ. We can assume that approximately Tc ≈ T

(−)
c , where the phase

transition to the condensate phase of the high­density component n(−) occurs.

where E(k, n) = ωk + U(n) and n = 2n
(id)
lim − nI . Solving eq. (23) at nI = 0.1 fm−3, for

κ = 0.5 and κ = 1.0 we obtained T
(−)
c = 128.8 MeV and T

(−)
c = 251 MeV, respectively.

These results are depicted in Fig. 1 on left and right panels, respectively.
It turns out that the temperature T

(−)
c determines the phase transition to BEC for whole

pion system because the antiparticles (π+­mesons) from the low­density component n(+)(T )
are completely in thermal state for all temperatures and thus, the condensate is created just by
the particles of high­density component n(−)(T ). Then, the total density of condensate in the
two­component pion system is created by π−­mesons only, i.e. ncond = n

(−)
cond, and this particle­

number density plays the role of the order parameter. The condensate density as function of
temperature obtained in the framework of our model for three values of the attraction parameter,
κ = 0.1, 0.5, 1.0, at nI = 0.1 fm−3, is depicted in Fig. 2, left panel. We record a very small
discrepancy of the critical temperature T

(−)
c on variations of the attraction parameter κ, the

difference is not more than 2MeV. Then, one can use the following approximation

Tc =
〈
T
(−)
c

〉
, (24)

what gives for the particular choice of parameters Tc ≈ 129 MeV. This is a temperature of the
second order phase transition which “signals” of the creation of condensate when temperature
decreases and crosses the value T = Tc. Note, the critical temperature Tc does not depend
virtually on the attraction parameter A of the mean field (12).

The dependence of the chemical potential on temperature is depicted in Fig. 2 on the right
panel for three values of the attraction parameter, κ = 0.1, 0.5, 1.0. First of all, we notice
that the chemical potential is almost independent of temperature when condensate exists in the
system, i.e. in the interval 0 < T ≤ Tc. Value of µ changes from 0.99mπ at small attraction,
κ = 0.1, to µ = 0.74mπ for the critical attraction parameter κ = 1.0. Hence, for 0.1 ≤ κ ≤ 1.0
the chemical potential is in the range 103 ≤ µ ≤ 138MeV. It is intriguing to remind that already
first attempts to fit the pT spectra of π−­mesons in O+Au collisions at 200 AGeV/nucleon (at
midrapidity) by the ideal­gas Bose­Einstein distribution results in the values µ ≈ 126 MeV,
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Fig. 3. Left panel: Specific heat normalized to T 3 versus temperature in the selfinteracting π− − π+­system
when the isospin density is kept constant, nI = 0.1 fm−3. The curves are marked by the attraction

parameter κ. Right panel: The derivative of the entropy density with respect to temperature for the same
system as on the left panel.

T ≈ 167MeV and in S+S collisions at 200AGeV/nucleon it results in the values µ ≈ 118MeV,
T ≈ 164 MeV [33]. So, the fit of data required the pion chemical potential in the range µ ≈
115 − 130 MeV what we can just formally compare with the values of the chemical potential
obtained in our model.

The derivative of µ(T ) with respect to temperature has a jump in the points, which is
indicated in Fig. 2 on right panel as open circles. These points on the curves µ(T ) correspond
to T

(−)
c , which values differ from one another not more than ∆T = 2 MeV. As we concluded

before, this is the temperature of phase transition, see eq. (24), which practically does not depend
on intensity of attraction. To prove that this is indeed a phase transition of the second order, we
first consider the specific heat CV in the system under consideration

CV = −T
∂2f

∂T 2
= T

∂s

∂T
, (25)

where f(T, nI) is the density of the free energy and s(T, nI) is the entropy density. The density
of the free energy reads

f = − p(T, nI) + nI µ(T, nI) . (26)

Having solved eqs. (15), (16) in accordance with eq. (10) one can calculate pressure for the case
when particles and antiparticles are both in the thermal phase. Then, the density of the free
energy looks like

f = nI µ(T, nI) − 1

3

∫
d3k

(2π)3
k2

ωk

[
f
(
E(k, n), µ

)
+ f

(
E(k, n),−µ

)]
− P (n) , (27)

where functions n(T, nI) and µ(T, nI) are known. Here, we use the excess pressure P (n),
which is obtained by integrating eq. (9) for the Skyrme­like parametrization of the mean field
(12) with taking into account that P (n = 0) = 0,

P (n) = −A

2
n2 +

2B

3
n3 , (28)

(Remind in the present consideration we neglect PI(nI)).
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For temperatures less thanTcwhen the high­density component of the pion gas (π−mesons)
is in the condensate phase and low­density component (π+ mesons) is in the thermal phase, the
density of the free energy reads (µ = U(n) +m as in eq. (21)):

f = nI [U(n) +m] − 1

3

∫
d3k

(2π)3
k2

ωk
f
(
ωk, µ

)∣∣∣
µ=m

− 1

3

∫
d3k

(2π)3
k2

ωk
f
(
E(k, n),−µ

)∣∣∣
µ=U(n)+m

− P (n). (29)

Here the total pion density is n = 2n(+) + nI and E(k, n) = ωk + U(n), where n(+)(T, nI)
is solution of eq. (21). Using the density of the free energy (27) to the right of Tc and (29)
to the left of Tc, respectively, we calculate the specific heat normalized to T 3, as function of
temperature at nI = 0.1 fm−3 for three values of the attraction parameter κ = 0.1, 0.5, 1.0.
These dependencies are depicted in Fig. 3 on the left panel. It is obvious that dependence of
the specific heat on temperature is a continuous function but the derivative of this function has
a finite gap. To be convinced on that we depicted separately in Fig. 3 on the right panel the
temperature dependence of the derivative of the entropy density sT = ∂s/∂T for the same set
of parameters as on the left panel. Evidently seen is the same break of the derivatives of the
functions sT (T ), which exhibits a discontinuity of the derivative of third order of the density of
the free energy. It has long been known (see ref. [34] for confirmation) that the Bose­Einstein
condensation is indeed a third­order phase transition according to the first classification of gen­
eral types of transitions between phases of matter, introduced by Paul Ehrenfest in 1933 [35,36].
Therefore, the obtained temperature Tc is really the temperature of the phase transition of the
second order (according to modern terminology) and the density of condensate ncond = n

(−)
cond

provided by π− mesons is the order parameter.
5. Concluding remarks

In this paper we have presented a thermodynamically consistent method to describe at finite
temperatures a dense bosonic system which consists of interacting particles and antiparticles at
a fixed isospin density nI . We considered the system of meson particles withm = mπ and zero
spin, which we named conventionally as “pions” because the charged π­mesons are the lightest
nuclear particle and the lightest hadrons that couple to the isospin chemical potential. It was
shown that in the particle­antiparticle meson system, where the isospin density nI is conserved,
the Bose­Einstein condensate exists in the system starting from zero temperature what is a result
of the phase transition of the second order which occurs at the temperature Tc when temperature
decreases. 1 This statement is in contrast to the conclusion given in Refs. [20,28,32,37], where
the system with zero chemical potential, µ = 0, was investigated. Indeed, in [20, 28, 32, 37]
was shown that just in case the attractive mean field is strong enough the multi­boson system
undergoes the phase transition of the first order and as a result it develops the Bose condensate
starting from a finite temperature.

It was obtained that independently of parameters of the mean field the multi­boson system
develops the Bose condensate for particles of high­density component only. This means that in
the pion gas, where nI = n

(−)
π −n

(+)
π > 0, the π− mesons only undergo the phase transition to

the Bose­Einstein condensate. At the same time, the π+ mesons exist only in the thermal phase

1Note, the chiral perturbation theory predicts that transition between the vacuum and the BEC
state is of the second order with universality class O(2) [13].
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for whole range of temperatures. Then, for the experimental efforts it makes sense to look for
the Bose condensate, which is created just by π− mesons.

It was shown that the dimensionless quantity κ = A/2
√
mB, which itself is a combination

of the parameters of the mean field, U(n) = −An + Bn2, and particle mass, is the scaling
parameter of the model. The parameter κ determines the different possible phase scenarios
which occur in the particle­antiparticle boson system. The attractive coefficient A = κAc,
whereAc ≡ 2

√
mB, was parameterized by the κwith κ = 1 as a critical value, which separates

the regime of “weak attraction” (κ ≤ 1) from the regime of “strong attraction” (κ > 1). In this
paper, we have considered only the case of “weak attraction”.

Description of thermodynamic properties of the system was performed employing the
Canonical Ensemble formulation, where the chemical potential µ is a thermodynamic quantity
which depends on the canonical variables (T, nI). It was obtained dependencies of chemical
potential on temperature for different attraction parameters κ which show that µ ≈ const in the
“condensate” interval of temperatures 0 ≤ T ≤ Tc, where these constant values essentially
depend on the intensity of attraction. Meanwhile the temperature T (−)

c of the phase transition
to BEC of π− (high­density component) exhibits very weak dependence on κ, as it is evidently
seen in Fig. 2, left panel. For wide range of the values of κ, from 0.1 to 1.0, these critical temper­
atures differ from one another not more than 2 MeV, this inspires the introduction of the mean
value Tc =

〈
T
(−)
c

〉
of the phase transition to BEC.

The results obtained are in correspondence with known peculiar property of the ideal Bose
gas: the Bose­Einstein condensation represents the phase transition of third order or a discon­
tinuity of the derivative of the specific heat [34]. In the framework of the present model we
obtained that in the same way the derivative of the specific heat undergoes a break at the temper­
ature Tc, as it is evidently seen on the left panel in Fig. 3. A discontinuity of the third derivative
of the free energy one can see on the right panel in Fig. 3 as a break of the derivative of the
entropy density at the temperature Tc.

The role of neutral pions is left beyond the scope of the present paper. The present analysis
can be improved by addressing these issue in more detail and also by generalizing the calculation
to nonzero contribution to the mean field which depends on nI . Authors plan to consider these
problems elsewhere.
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A. Self­consistent statistical mechanics in mean­field approach
First we shortly remind the basics of the thermodynamical mean­field model which was

introduced in ref. [23], see more details in [24, 25].
Let us consider the system of interacting particles from general thermodynamic point of

view. One can describe such a system in terms of the free energy density ϕ(n, T ), which depends
on particle density n and temperature T . The free energy density (FED) is related to other
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thermodynamical quantities as follows

ϕ(n, T ) = ε(n, T ) − T s(n, T ) , (30)
ϕ(n, T ) = nµ(n, T ) − p(n, T ) , (31)

where ε(n, T ) is the energy density and p(n, T ) is the pressure. Two quantities µ(n, T ) (the
chemical potential) and s(n, T ) (the entropy density) are given as partial derivatives with respect
to independent variables (n, T )

µ =

(
∂ϕ

∂n

)
T

, s = −
(
∂ϕ

∂T

)
n

. (32)

Very generally, for a system of interacting particles the FED can be written as a sum of free
and interacting contributions

ϕ(n, T ) = ϕ0(n, T ) + ϕint(n, T ) , (33)

where ϕ0 is the FED of the noninteracting system. The chemical potential can also be splitted
into “free” and “interacting” pieces. In accordance with eq. (32) we obtain

µ = µ0 +

(
∂ϕint
∂n

)
T

, where µ0 ≡
(
∂ϕ0

∂n

)
T

. (34)

Further, taking into account eqs. (31), (33) and (34) one can represent the pressure in the fol­
lowing form

p = nµ(n, T ) − ϕ(n, T ) = p0(n, T ) + n

(
∂ϕint
∂n

)
T

− ϕint , (35)

where
p0(n, T ) = nµ0(n, T ) − ϕ0(n, T ) . (36)

One can put this expression in correspondence to the pressure of the ideal gas p̃0 calculated in
the grand canonical ensemble for the same values T and µ0 as they are taken in (36)

p̃0(T, µ0) =
g

3

∫
d3k

(2π)3
k2

ωk
f(ωk, µ0) , (37)

where g is the degeneracy factor, f(k;T, µ0) is the ideal gas distribution function (the Boltz­
mann, Fermi­Dirac or Bose­Einstein one), which depends on temperature and ideal chemical
potential µ0, and ωk =

√
m2 + k2.

Now we introduce the following important notations:

U(n, T ) =

[
∂ϕint(n, T )

∂n

]
T

, (38)

Pex(n, T ) = n

[
∂ϕint(n, T )

∂n

]
T

− ϕint(n, T ) . (39)
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One can immediately see that these quantities are related as

n
∂U(n, T )

∂n
=

∂Pex(n, T )

∂n
. (40)

By subtracting eq. (39) from eq. (35) one can rewrite the total pressure as

p = p0(n, T ) + Pex(n, T ) . (41)

Evidently, if one defines p0(n, T ) as the pressure of the ideal gas, then, the quantity Pex(n, T )
should be regarded as an excess pressure, which is due to the interaction between particles.

Next, in our evaluations of the thermodynamic quantities of the interacting system we
would like to use formula (37) for the pressure of the ideal gas. In the canonical ensemble the
independent variables are n and T , whereas in the grand canonical ensemble they are µ and T .
Hence, it is necessary to express the free chemical potential µ0 through these variables. One can
do this by substituting eq. (38) into eq. (34), thus obtaining

µ = µ0 + U(n, T ) . (42)

It is convenient to introduce also the single­particle energy for interacting particles

E(k, n) =
√
m2 + k2 + U(n) . (43)

In the grand canonical ensemble we treat the particle density n as n(µ, T ), and as a result, the
pressure of interacting particles can be expressed as

p(T, µ) =
g

3

∫
d3k

(2π)3
k2√

m2 + k2
f
(
E(k, n), µ

)
+ Pex(n, T ) , (44)

where

f(E, µ) =

{
exp

[
E − µ

T

]
+ a

}−1

(45)

with a = +1 for fermions, a = −1 for bosons and a = 0 for the Boltzmann statistics.
In a homogeneous system, where the thermodynamic potential can be expressed asΩ(T, µ, V ) =

−p(T, µ)V , the particle density reads n(T, µ) = ∂p(T, µ)/∂µ. Then, with the help of relations
(40) and (44) we obtain the standard relation

n = g

∫
d3k

(2π)3
f(k;T, µ) . (46)

Since the distribution function f(k;T, µ) is itself a function of n, this expression is not a formula
for particle density n, but an equation to be solved in a selfconsistent way for every point of the
(T, µ) plane. The solution will result in the explicit dependence n = n(T, µ), which in general
differs from the ideal gas expression, n0(T, µ0). Using s = ∂p/∂T and the Euler relation,
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ε+ p = Ts+ µn, one obtains for the energy density

ε(T, µ) = g

∫
d3k

(2π)3

√
m2 + k2 f(k;T, µ) + nU(n, T ) − Pex(n, T ) +

+T

{[
∂Pex(n, T )

∂T

]
n

− n

[
∂U(n, T )

∂T

]
n

}
. (47)

This type of approach is widely used in relativisticmean fieldmodels of nuclearmatter [38],
where the nucleons interact with a scalar field φ (attraction) and a vector field Vµ (repulsion).
In the homogeneous static system only the “time” component of the vector field V0 survives. In
our notations it is equal to the mean field U(n, T ).
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