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EXACT GREEN’S FUNCTION OF PHOTON ANDMEDIUM EFFECTS IN QED2+1
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In (2+1)dimensional MaxwellChernSimons quantum electrodynamics, we derive the structure of the

exact polarization operator in the presence of medium characterized by a chemical potential µ. We show that
the transverse part of the operator is the sum of four tensors. These tensors and unit one form an algebra
with respect to the commutation operation. Green’s function of photons at zero temperature is derived on the
basis of calculations of the oneloop form factors. The spectrum of modes is investigated. We find that the
transverse and longitudinalmodes exist inmedium. This result differs from that of other authors. Dependence
of the photon Debye mass on the form factors is investigated and a static electric potential is calculated.

Keywords: photon polarization operator, Green’s function, spectrum, screening.

Received 12.10.2020; Received in revised form 15.11.2020; Accepted 01.12.2020

1. Introduction
MaxwellChernSimons (MCS) QED2+1 attracts major attention as a theory which de

scribes various condensed matter physics effects, such as high temperature superconductiv
ity [1–4] and the quantum Hall effect [5]. The photon polarization operatorΠµν (µ, ν = 1, 2, 3)
in the MCS theory acts as major object. It is responsible both for magnetic and Debye screen
ing, determines the photon energy spectrum and properties of the thermodynamic system. Its
structure was investigated from various perspectives for applications [6–10]. However, a set
of conclusions from the photon dispersion relation in [10] ended up inaccurate because of the
algebraically closed structure of this tensor has not been considered.

Our goal here is to derive the photon exact Green’s function in medium from the polar
ization operator. For doing this we derive the complete tensor structure from the transversality
condition Πµνkµ = 0. Then we calculate the form factors in one and twoloop approximations
at a finite medium density.

The photon spectrum is determined from the poles of the obtained Green’s function. As it
will be shown, in the presence of medium, photon has two longitudinal elliptical modes. This re
sult is consistent with that of obtained in [10]. Based on the completeness of the tensor structure,
photon Green’s function and the dispersion laws are derived.

For the component ∆33(k3 = 0,k) of Green’s function, we calculate a static electric po
tential and determine the dependence of Debye’s mass on the form factors.

The paper is organized as follows. Section 2 explores the general structure of the polar
ization operator and Green’s function of photon. Section 3 calculates the form factors of the
polarization operator. The energy spectrum of photon is studied in Section 4. Debye’s mass
and potential between charges are calculated in Section 5. The results obtained are discussed in
Section 6.

2. Exact photon polarization operator and Green’s function
Consider the MCS QED2+1 using Euclidean variables xµ = (x, x3) in the presence of a

medium characterized by a chemical potential µ. The Lagrangian is

L =
1

4
F 2
µν + ψ̄(∂̂ +m)ψ − ieψ̄Âψ − 1

2ξ
(∂µA

µ)2, (1)

where ξ is a gauge parameter. We are not adding the P odd ChernSimons term to the (1)

LCS ∼ εµνλFµνAλ (2)
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where εµνλ is the fully asymmetric unit tensor. Such term is generated by radiation corrections.
Covariant photon propagator with momentum of kµ and covariant electron propagator with

momentum of pµ are respectively:

Dµν(k) =
1

k2

(
δµν −

kµkν
k2

)
+

ξ

k2
kµkν
k2

, (3)

G(p) =
−ip̂+m

p2 +m2
. (4)

Our aim is to derive exact Green’s function of photon ∆µν , based on Schwinger–Dyson’s
equation [12]

∆µν = (D−1
µν −Πµν)

−1. (5)

To evaluate it we have to construct a closed tensor structure forΠµν . Polarization operator
has been studied already in [6–9]. However such structure was not derived.

The condition must work for the transverse part of the operator

kµΠµν = 0. (6)

Within the MCS theory, there are four objects defining the tensor structure of the operator:
kµ, εµνλ, also a speed of medium uµ and Kronecker’s δµν . All possible products of the initial
objects give us 11 second rank tensors:

T
′1
µν = δµν , T

′2
µν = kµkν , T

′3
µν = kµuν ,

T
′4
µν = uµkν , T

′5
µν = uµuν ,

T
′6
µν = uµεναβkαuβ, T

′7
µν = kµεναβkαuβ,

T
′8
µν = εµνλuλ, T

′9
µν = εµνλkλ,

T
′10
µν = uνεµαβkαuβ, T

′11
µν = kνεµαβkαuβ. (7)

Tensors (7) define polarization operator in general case:

Πµν =
∑11

i=1
T

′i
µνΠ

′
i, (8)

where Π′
i are the corresponding form factors.

Let us perform the transformations

T i =M i
jT

′j , (9)

where T ′j , (j = 1..11) is a set of tensors (7), T i, (i = 1..11) – new set andM i
j – transformation

matrix. With this transformation, we obtain new form factors, which are the linear combinations
of form factors in (8). A new set of tensors has to follow the linear independency condition

det(M) ̸= 0. (10)

Let us choose a new tensor basis in which all tensors are either symmetric or antisymmetric
with respect to the permutation indices. Discarding structures that do not satisfy the transver
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sality condition (6), we get

T 1
µν = δµν − kµkν

k2
,

T 2
µν =

kµkν
k2

− kµuν+kνuµ

(uk) +
uµuν

(uk)2
k2,

T 3
µν = εµνλkλ,

T 4
µν = εµαβkαuβ

(
kν − k2

(uk)uν

)
+

+εναβkαuβ

(
kµ − k2

(uk)uµ

)
. (11)

The first two tensors are known from (3+1)dimensional thermal QED. The third is from
the vacuum MCS QED2+1. All the tensors, together with the unit one T 0

µν = δµν , form the
algebra with respect to a commutation operation with structural constants Cij

k[
T i, T j

]
= Cij

k T
k. (12)

Nonzero components Cij
k are

C23
5 = −C32

5 = − 1
(uk) ,

C24
5 = −C42

5 = C25
4 = −C52

4 = 1− k2

(uk)2
,

C35
1 = −C53

1 = 2k2(uk)
(

k2

(uk)2
− 1
)
,

C35
2 = −C53

2 = −4k2(uk),

C45
1 = −C54

1 = 2k2(uk)2
(

k2

(uk)2
− 1
)2
,

C45
2 = −C54

2 = −4k2(uk)2
(

k2

(uk)2
− 1
)
. (13)

Therefore, the transverse part of the full polarization operator has the form

Πµν =
∑4

i=1
T i
µνΠi, (14)

where T i
µν is a set of tensors (11) and Πi are corresponding form factors. The longitudinal part

is proportional to the unit tensor δµν .
In [7], in the oneloop approximation at a finite temperature, the polarization operator was

calculated componentwise. However, its tensor structure has not been studied. In papers [8–10],
in the presence of medium, the tensor structure was obtained. In our present calculations, it
follows from (14) when the form factor Π4 is equalled to zero,

Πone−loop
µν =

(
δµν −

kµkν
k2

)
Π1 +

(
kµkν
k2

−

−kµuν + kνuµ
(uk)

+
uµuν
(uk)2

k2
)
Π2 + εµνλkλΠ3. (15)

In [10], the complete polarization operator is the following

Πµν = ΠTPµν +ΠLQµν + εµνλkλΠ3 (16)
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where ΠT and ΠL are transverse and longitudinal form factors, respectively. The type and
properties of the projectors Pµν and Qµν are defined in paper [11].

In the next section, we show that in the twoloop approximation, in comparison with the
expression for the one loop (15), the tensor T 4

µν is added with the form factorΠ4. Therefore, the
tensor basis Pµν ,Qµν and εµνλkλ is complete only for the polarization operator in the oneloop
approximation, and it is impossible to construct an exact Green’s function on its basis. It can be
built based on the full set (14).

Note also that in Refs. [8,9] only the form factor Π3 was calculated within the approxima
tion of zero photon momentum.

In the next section, we calculate all the form factors of the polarization operator (15) at
finite density and zero temperature for arbitrary k3. This generalizes the results of [6], where
the calculations were performed in the limit of static fields (k3 = 0).

It should be noted that discarding all terms with antisymmetric unit tensor, the expression
(14) reduces to the already obtained for the usual Maxwell QED [13]:

Πµν =

(
δµν −

kµkν
k2

)
Π1 +

+

(
kµkν
k2

− kµuν + kνuµ
(uk)

+
uµuν
(uk)2

k2
)
Π2. (17)

To derive photon Green’s function from equation (5) the full polarization operator (14)
must be used. Taking into account the tensor algebra (11) and photon propagator in the Feynman
gauge (3), after inversion the Green’s function has the form

∆µν =
∑4

i=1
T i
µν∆i +

1

k2
kµkν
k2

(18)

where T i are tensors from the set (11) and∆i are the corresponding form factors,

∆1 =
(
k2 −Π1 −

(
k2

(uk)2
− 1
)
Π2

)
M,

∆2 = Π2M,

∆3 = Π3M,

∆4 = Π4M,

M =
[(
k2 −Π1

) (
k2 −Π1−

−
(

k2

(uk)2
− 1
)
Π2

)
+ k2

(
Π2

3 −
(

k2

(uk)2
− 1
)2

(uk)2Π2
4

)]−1
. (19)

The resulting full Green’s function contains a form factor at the fourth tensor from the
complete set. It was missed in [10] because of incompleteness of the used tensor basis. In fact,
its absence does not affect the dispersion equation based on the oneloop approximation

(
k2 −Π1

)(
k2 −Π1 −

(
k2

(uk)2
− 1

)
Π2

)
+ k2Π2

3 = 0. (20)

However, in general case starting from the twoloop and higher orders, this is incorrect. If Π3

is equal to zero, the Green’s function (18) coincides with Green’s function for Maxwell (3+1)
dimensional QED [13]. For Π2 = 0 it becomes wellknown vacuum oneloop Green’s function

22



Exact Green’s function of photon and medium effects in QED2 + 1

for the MCS theory (see, for example, Ref. [14]).
3. Calculation of form factors

In this section, we carry out calculations within an imaginary time formalism. At zero
temperature and finite density, the substitution for the electron momentum is

pµ → p∗µ =

{
pµ, µ = 1, 2

p3 − iµ, µ = 3
(21)

where µ is chemical potential.
Oneloop polarization operator has the form

Πone−loop
µν =

e2

(2π)3
Tr

∫
d3pσµG(p

∗)σνG(p
∗ + k), (22)

where σµ are Pauli’s matrices.
After the trace calculating, we get

Πone−loop
µν =

2e2

(2π)3

∫
d3p

[
mεµνλkλ + δµν(p

∗2+

+ p∗k +m2)− (2p∗µp
∗
ν + p∗µkν + p∗νkµ)

]
×

×
(
p∗2 +m2

)−1 (
(p∗ + k)2 +m2

)−1
. (23)

Considering the expression (23), we come to conclusion thatΠ4 andΠ5 form factors equal
zero, in oneloop approximation. Therefore, the tensor structure of the polarization operator is
defined by the expression (15).

After integration, we obtain the wellknown result [7, 14] for renormalized vacuum polar
ization operator

Πvac
Rµν =

(
δµν − kµkν

k2

)
Π1(k) + εµνλkλΠ3(k),

Π1(k) = − e2

8π

(
2m+ k2−4m2

|k| ×

× arcsin
(

|k|√
k2+4m2

))
,

Π3(k) =
me2

2π|k| arcsin
(

|k|√
k2+4m2

)
, (24)

with renormalization condition
Π1(0) = 0. (25)

Calculation of the statistical parts in the longwavelength limit k ≪ k3 gives

Πstat
1 =

e2

(2π)2
θ(µ2 −m2)

[
−J +

k2

k23
L1(k3)+

+i

(
L1(k3)−

k2

k23

(
1

2
L3(k3) + L4(k3)

))]
, (26)
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Πstat
2 =

e2

(2π)2
θ(µ2 −m2)

[
k−2

k−2
3

(
J −

(
1 +

4m2

k23

)
×

× L1(k3)
)
− 8m2

k23
L1(k3)− L5(k3) + iL3(k3)

]
, (27)

Πstat
3 = − e2

(2π)2
θ(µ2 −m2)m

[
2L1(k3)

k23
−

−k2

k23

(
L1(k3)

k23
+ L2(k3)

)]
, (28)

where θ(µ2 −m2) is Heaviside’s step function, and the energy functions are

L1(k3) = πk3 arctan 2k3(µ−m)
k23+4µm

,

L2(k3) = 2π m
k23+4m2

(
µ
m

(
k23+4m2

k23+4µ2

)2
− 1

)
,

L3(k3) =
πk3
2 ln

(
k23+4µ2

k23+4m2

)
,

L4(k3) = πk3(µ
2 −m2)(3k43 + 4(µ2 +m2)k23 −

−16µ2m2)(k23 + 4m2)−1(k23 + 4µ2)−2,

L5(k3) = 2π(µ−m)(k43 + 4µ(µ−m)k23 +

+8µ(µ3 −mµ2 −m2µ−m3))(k23 + 4µ2)−2,

J = 2π(µ−m). (29)

In the highdensity limit, µ≫ m, we obtain

L1(k3) = π
(
k3 arctan 2µ

k3
− 2m

)
,

L2(k3) = 2πµ
(

k23
(k23+4µ2)2

−

− 1
k23

m
µ + 4µ2

(k23+4µ2)2
m2

µ2

)
,

L3(k3) = π
(
k3
2 ln

(
1 + 4µ2

k23

)
− 2µ2

k3
m2

µ2

)
,

L4(k3) =
πµ2

(k23+4µ2)2

(
k3(3k

2
3 + 4µ2)−

− 1
k3
(32µ4 + 3k43 + 12µ2k23)

m2

µ2

)
,

L5(k3) = 2πµ
(
k43+4µ2k23+8µ4

(k23+4µ2)2
−

−m
µ +

4µ2k23
(k23+4µ2)2

m2

µ2

)
. (30)

The imaginary parts in expressions (26), (27) and (28) appear for nonzero photon energies
(k3 ̸= 0). In Ref. [6] the polarization operator was calculated in the static limit and the imaginary
parts have been missed. It should also be noted that the obtained form factors correspond to
Green’s function at finite temperature.

A nonzero Π3 form factor indicates that the density of the Lagrangian function (1) incap
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sulates ChernSimons term (2). Thus we observe the P symmetry dynamic violation, that is an
essential feature of planar theories.

Twoloop calculations of the form factors are too large, so, we present only the integral
expression for the Π4

Π4 =
me4

(2π)6

∫
d3pd3q(q∗3 − 3p∗3)

((p∗ + k)2 +m2) ((q∗ + k)2 +m2) (p∗2 +m2) (q∗2 +m2) (p∗ − q∗)2
,

(31)
which, as a result of a numerical integration, turns out to be nonzero.

4. Photon spectrum in medium
As it is known [4], in the planar MCS QED there are two massive photon modes. Indeed,

from the expression for the exact Green’s function in the oneloop approximation (18), by turn
ing on noenvironment mode (Π2 = 0 and Π4 = 0) and equating the denominator to zero, we
obtain the equation (

k2 −Π1

)2
+ k2Π2

3 = 0. (32)

Its solutions determine the energy spectrum of two states.
In the medium presence, the expression (18) gives the following dispersion equation

(
k2 −Π1

)(
k2 −Π1 −

(
k2

(uk)2
− 1

)
Π2

)
+ k2

(
Π2

3 −
(

k2

(uk)2
− 1

)2

(uk)2Π2
4

)
= 0,

(33)
Note that the authors of [10] have obtain photonGreen’s function from an incomplete tensor

basis for the polarization operator. This results in the absence of theΠ4 form factor in (33). Such
type equation is valid only in oneloop approximation. He also noted that the form factor (Π3)
leads to mixing of transverse

(
k2 −Π1

)
and longitudinal

(
k2 −Π1 −

(
k2

(uk)2
− 1
)
Π2

)
modes.

As a result, it was concluded that there are two longitudinally elliptical massive states of photon

m2
(1,2) = −Π1 −

k2

2k23
Π2 ±

1

2k23

√
k4Π2

2 − 4k43(k
2
3 + k2)Π2

3. (34)

For the Π3 = 0 they, the masses for the transverse and longitudinal states become known,
respectively

m2
t = −Π1, (35)

m2
l = −Π1 −

k2

k23
Π2. (36)

The authors also noted that in the limit of high densities and temperatures, the ChernSimons
form factor can be neglected. And that leads to the transition from longitudinal elliptical modes
to the combination of transverse and longitudinal ones.

Our calculations confirm that ChernSimons form factor Π3 in the µ ≫ m limit is neg
ligible small compared to Π1 and Π2. The form factor Π4 has a similar behaviour. However,
based on the fact that the tensor set is closed for the polarization operator (11), we obtain the
dispersion equation (33), which determines the spectrum of two massive longitudinal elliptic
states.

We obtain solutions of (33) in the limit of dense medium, µ ≫ (m, |k3|). In this case,
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equation splits in two dispersion equations for the longitudinal and the transverse modes, re
spectively

1− ReΠ33(k, ω(k))
k2

= 0, (37)

k2 − ω2 −ReΠ1(k, ω(k)) = 0, (38)

where ω2 = −k23 and Π33 = k2
k2+k23

(
Π1 +

k2
k23
Π2

)
. For the form factors in the last equations,

the standard analytic continuation to the retarded Green’s function is performed [13]

Πret = Π(k3 = i(k0 + iε)). (39)

Taking into account the above and the explicit form of the form factors (26), (27), (28),
(29) and (30), we obtain two branches of transverse oscillations

ω2 =
1

2
k2 +

e2

8π
(µ−m)±

±
√

e4

16π2
(µ−m)2 +

3e2

2π
k2(µ−m) + k4, (40)

with low attenuation
ImΠ1 = −2

µ2

ω2
. (41)

For the longitudinal mode, we obtain a quintic equation for ω variable

ω5 =
e2

4π

(
2(µ−m)ω3 − 2µ2ω2 − 4µ2k2

)
, (42)

which can be solved numerically if the charge e is replaced by effective charge e(µ). It is
important to note that the longitudinal spectrum is stable even in the more general case (µ ∼
ω, µ≫ m):

ImΠ33 = 0. (43)

5. Debye’s screening
The potential between two charges q1 and q2 is determined by the time components of

Green’s function (18)

V (R) = q1q2

∫
d2k

(2π)2
∆33(k3 = 0,k)ei

−→
k ·

−→
R =

= q1q2

∫
d2k

(2π)2
(k2 −Π1)e

i
−→
k ·

−→
R

(k2 −Π1)(k2 −Π33) + k2Π2
3

, (44)

where
−→
R is a distance between charges.

Divide the numerator and the denominator of the integrand by k2 −Π1. We get

V (R) = q1q2

∫
d2k

(2π)2
ei
−→
k ·

−→
R

k2 +m2
= q1q2K0(mlR), (45)
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where
m2 = −Π1 −

k2

k23
Π2 +

(k2 + k23)Π
2
3

k2 + k23 −Π1
(46)

andK0 is Macdonald function with lim
r→∞

K0(r) ∼
√

π
2re

−r. Therefore

V (R) =
q1q2

2
√
2π

e−mDR

√
mDR

, (47)

wheremD is the Debye mass of photon, which is the limit ofm at k3 = 0,k → 0:

m2
D = −Π33(k3 = 0,k → 0) +

k2Π2
3(k3 = 0,k → 0)

k2 −Π1
. (48)

The expression (47) is the same as derived for zero density and finite temperature [15]. The
form factors of the polarization operator in the static limit are (3):

Π33(k3 = 0,k → 0) = − e2

2π
θ(µ2 −m2)(µ−m),

Π3(k3 = 0,k → 0) = 0. (49)

Formulas (47), (48) and (49) show that the topological ChernSimons form factor is not present
in the photon Debye mass and does not affect the screening. Therefore, one can use the standard
definition

m2
D = −Π33(k3 = 0,k → 0) =

e2

2π
θ(µ2 −m2)(µ−m). (50)

Expression (50) shows the linear grows of Debye’s mass with increasing of density. Similar
situation takes also place in (3+1)dimensional QED [13].

6. Discussion and conclusion
(2 + 1)  dimensional MaxwellChernSimons theory in the presence of medium density

was considered. From the transversality condition, which is a consequence of theWard identities
for photon Green’s function, the closed tensor set of the polarization operator was constructed.
The operator is formed out the sum of four tensors with the corresponding form factors (14).
Tensors together with the unit tensor δµν form the algebra with respect to the commutation oper
ation. This structure generalizes the results of [6], where the form factors have been calculated
in the oneloop approximation at a finite density in the limit |k3| ≫ k. We showed that the first
three terms from the general expression (14) are nonzero in oneloop approximation. The Π4

form factor has a nonzero value in twoloop approximation. From explicit calculations in the
highdensity limit, we also have obtained that the ChernSimons form factors Π3 and Π4 are
negligible small compared to the others.

The photon exact Green’s function (18) has been derived from the Schwinger–Dyson equa
tion by using the calculated polarization operator. Its pole structure confirms the existence of
two longitudinal elliptical modes. This result is consistent with obtained in [10]. However, the
dispersion equation turned out to be different because of the incompleteness of the basis set used
in that paper. In the µ≫ (m,ω) limit, the longitudinal elliptic modes migrate to transverse and
longitudinal ones. We have derived the dispersion laws for each of these modes. We found
that the transverse mode has a weak damping, and the longitudinal mode is stable even in more
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general case µ ∼ ω.
We also investigated the Debye’s screening effect as a function of medium density. The

static electric potential was calculated. Its structure is similar to the one with zero density and
finite temperature [15]. We found that the ChernSimons term is not involved into the photon
Debye mass. Therefore, the standard definition can be usedm2

D = −Π33(k3 = 0,k → 0). The
Debye shielding radius diminishes with increasing of medium density.
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