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FREE ENERGY AND ENTROPY FOR AN IMPURITY IN A
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In this paper, we continue our study of periodic lattices formed by delta functions and their derivatives
in (1+1) dimensions. Such systems are interesting as allowing for investigation of complicated problems in
quite simple terms. Specifically, we consider the free energy of a single impurity in the background of such
lattice. After developing the necessary technical tools, we consider as an example a specific case and found
that the free energy shows a non monotone behavior as function of the temperature.
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1. Introduction
One­dimensional systems are an excellent laboratory for studying quantum effects.On the

one hand, sometimes it is worth reducing the problem to one spatial dimension in order to obtain
explicit and instructive formulas. On the other hand, one­dimensional systems have their own
unique properties [1], for example, the standard description of electron gas in a solid in terms
of quasiparticles breaks down for D = 1, where only collective excitations may exist. Conse­
quently, the electron transport differs from that in 2­ and 3­dimensional materials. Nanowires
and carbon nanotubes should be mentioned as such one­dimensional and quasi­one­dimensional
systems that have acquired practical importance in the last decades. Another example is the 1D
quantum liquid, which cannot be described by Fermi­liquid theory and at low energies has a
gapless excitation spectrum with linear dispersion [2].

A one­dimensional system may be manufactured by trapping ultra cold atoms in an optical
lattice made by interfering lasers. It is modeled by periodic potentials with a point support. The
simplest one­dimensional model is the “Dirac comb” with a Dirac delta functions in each cell,
being a special case of a Kronig­Penney (KP) potential [3]. Such potentials are also known as
‘zero­range potentials’ and appear in various contexts [4], for example, in connection with the
Bose­Einstein condensation [5–7] or quantum liquids with impurities [2].

A straightforward generalization of the KP model is to include a derivative of a delta func­
tion (δ′­ potential), see equation 3 below. The most general case of zero range potentials can be
found in [8] and, with applications to metamaterials, in [9]. For the discussion of selfadjointness
for general operators with point support see [10].

The effect of impurities on the band structure in crystals is of actual interest from both
theoretical and experimental points of view. It has been suggested in [11] that in the neighbour­
hood of a defect there is a bend in the conduction band. In [12] this idea was explored using
one­dimensional KP model with an impurity. The influence of impurities on the transmission
coefficient and their relationship with localization was analyzed in [13]. In [14] the KP model
with arbitrary positions and forces of scattering centers was studied. Its particular case is an
almost periodic model with one or a few impurities. Here an interesting development is the KP
model with modulated scatterer heights, which can be applied in solid state and optical lattices.

In this paper, a one­dimensional scalar field is considered in the background formed by
a lattice of generalized delta functions with a point impurity. We study the influence of the
impurity on the free energy and the entropy of the systems. This is an addition to the research of
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the vacuum energy, free energy and the entropy started in articles [15–17] for periodic potentials
of generalized delta functions with and without impurities. In the weak coupling regime the
fluctuation forces acting on an impurity were analyzed in the very recent paper [18].

The outline of the paper is as follows. Section 2 introduces general formulas for the free
energy and the entropy in terms of a mode generating function. Section 3 is devoted to scattering
on a 1D lattice of generalized δ­functions. Here we derive the transfer matrix and the dispersion
relation. In Section 4 the translational invariance of the potential is broken by one impurity
which is a delta function with different parameters located inside one of the lattice cells. In
section 5 the integral representation for the free energy of the impurity is obtained. Finally, we
present and discuss some numerical results for the free energy and the entropy for an impurity
in one dimensional periodic background.

We use the system of units h̄ = c = 1.
2. The free energy

We use the standard expression

F =
∑
j

[
ω1−2s
j

2
+ T ln

(
1− e−βωj

)]
, (1)

≡ E0(s) + ∆TF ,

for the free energy of a system with discrete eigenfrequencies ωj . Here β = 1/T is the inverse
temperature and the sum extends over the whole spectrum. Since this sum includes, with the first
term in the square bracket, the vacuum energy, E0(s), it contains an ultraviolet divergence. For
this reason we introduced the zeta functional regularization by raising the frequency to a power
with sufficiently large regularization parameter s. After normalization one must take s = 0. The
second term in the square bracket is the temperature dependent part of the free energy, ∆TF ,
and it is convergent.

It is convenient to transform the sum into an integration. Using a contour γ which encircles
all eigenfrequencies ωj , we get

F =

∫
γ

dω

2πi

[
ω1−2s

2
+ T ln

(
1− e−βω

)] ∂

∂ω
ln∆(ω) (2)

where∆(ω) is the mode generating function, i.e., the discrete eigenfrequencies ωj are the solu­
tions of the equation∆(ω) = 0. Tightening the contour around the real ω­axis, the expressions
is transformed into

F =

∫ ∞

0

dω

π

[
ω1−2s

2
+ T ln

(
1− e−βω

)] ∂

∂ω
δ(ω) (3)

with the ’phase’

δ(ω) =
1

2i
ln

∆(ω − i0)

∆(ω + i0)
. (4)

The factor∆(ω+ i0) results from the part of the integration path above the axis and∆(ω− i0)
from the part below. It must be mentioned that eq. 3 is a generalization of the ’remarkable
formula’ derived and discussed in [19], or later, in [20] and [21] for systems with dissipation.
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From this representation it is also clear that ∂
∂ω δ(ω) can be interpreted as density of states.

Another change in the representation can be done by integrating by parts,

F = −
∫ ∞

0

dω

π

[
(1− 2s)ω−2s

2
+

1

eβω − 1

]
δ(ω), (5)

where the second term in the square bracket is the Boltzmann factor.
We mention also the relation to the Matsubara representation. By splitting the logarithm

in 4 into a sum of two, and turning the integration path in ln∆(ω + i0) towards the imaginary
axis, which is equivalent to a Wick rotation, and turning the path in the other term towards the
negative imaginary axis, we arrive at

F = (1− 2s) cos(πs)T
∑
ℓ≥0

′
ξ−2s
ℓ ln∆(iξℓ), (6)

where the prime indicates that the term with ℓ = 0 enters with the weight 1
2 and ξℓ = 2πTℓ

are the Matsubara frequencies. These come in from the poles the Boltzmann factor has on the
imaginary frequency axis.

The corresponding expression for the entropy

S = − ∂

∂T
F (7)

reads

S =

∫ ∞

0

dω

π

−β2ωeβω

(eβω − 1)
2 δ(ω). (8)

It is free from ultraviolet divergences.
3. The lattice

We consider a scalar field obeying the equation(
−ω2 +

∂

∂x
+ V (x)

)
ϕ(x) = 0 (9)

with a potential resulting from a lattice of delta functions and their derivatives,

Vδ(x) =
∑
n

(
αδ(x− an) + 2βδ′(x− an)

)
. (10)

This potential is realized by matching conditions(
ϕ(an+ 0)
ϕ′(an+ 0)

)
= M

(
ϕ(an− 0)
ϕ′(an− 0)

)
(11)

the field must obey. The matrixM depends on the parameters of the potential,

M =

(
1+β
1−β , 0
α

1−β2 ,
1−β
1+β

)
. (12)
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This model is a modification of the well known Kronig­Penney model [3]. For β = 0 the
potential consists of simple delta functions and is also known as ’Dirac comb’. Generalizations
can be found in [22].

For the solutions we make the ansatz

ϕ(x) =

∞∑
n=−∞

ϕn(x)Θn, (13)

with the characteristic function of the cells,

Θn =

{
1 if (n− 1)a ≤ x ≤ an,
0 otherwise, (14)

For the function in the cells we take linear combinations of plane waves

ϕn(x) = An e
iω(x−an) +Bn e

−iω(x−an). (15)

The coefficients An and Bn are related by the matching conditions 11,(
An+1

Bn+1

)
= T

(
An

Bn

)
, (n = −∞, . . . ,∞), (16)

with the transfer matrix

T = Q−1K−1MK, Q =

(
e−iωa , 0
0 , eiωa

)
, K =

(
1 , 1
iω , −iω

)
. (17)

Inserting 12 one arrives at

T =

(
w , z
z∗ , w∗

)
(18)

with

w =
1 + β2 − iα

2ω

1− β2
eiωa, z =

2β − iα
2ω

1− β2
eiωa. (19)

For real ω, of course, the relations

detT = 1, or equivalently, |w|2 − |z|2 = 1, (20)

hold. The periodicity of the lattice results in the Bloch condition,

ϕ(x+ a) = eiqaϕ(x), (21)

where q is the quasi momentum. This property provides a second relation, beyond 16 between
the coefficients, (

An+1

Bn+1

)
= eiqa

(
An

Bn

)
(22)
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Combining 16 and 22 we get with

(
T − eiqa

)( An

Bn

)
= 0. (23)

an equation for the coefficients. Since this is a homogeneous system, the determinant must
vanish,

det
(
T − eiqa

)
= 0. (24)

Using 18 and 19, we get the dispersion relation

cos(qa) = h(ω) (25)

with

h(ω) ≡ w + w∗

2
=

(1 + β2) cos(ωa) + α
2ω sin(ωa)

1− β2
. (26)

This equation determines the energy bands of the model. In order to have normalizable wave
functions, because of the translation property 21, we need to have real quasi momentum q. This
is the case if the condition

−1 ≤ h(ω) ≤ 1 (27)

holds.
The dispersion relation 25 has two solutions. We define

q =
1

a
arccosh(ω) (28)

on the main branch. The second solution has −q. Accordingly, we have two solutions 13,

ϕ±(x) =
∞∑

n=−∞
ϕ±
n (x)Θn, ϕ±

n (x) = A±
n e

iω(x−an) +B±
n e

−iω(x−an) (29)

which are defined by

ϕ±
n+1(x) = e±iqaϕ±

n (x). (30)

Solving the equation 23, we get for the coefficients(
A+

1

B+
1

)
=

(
w∗ − eiqa

−z∗

)
,

(
A−

1

B−
1

)
=

(
−z

w − e−iqa

)
, (31)

which completes the description of the solutions.
It should be mentioned that the above formulas are not new. Similar ones can be found in

literature. We take reference for instance to [23], [15], [24] and [25]. Also we mention a slightly
different derivation of the formulas 31 for the coefficients in the wave function in [26].
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4. The impurity
As impurity we take a potential like 10 with different parameters,

Vimp. = α̃δ(x− x0) + 2β̃δ′(x− x0), (32)

located at x0 and we assume 0 ≤ x0 ≤ a. The impurity beaks the translational invariance of
the lattice. We make the ansatz

ϕimp.(x) =
(
µL ϕ+(x) + νL ϕ−(x)

)
Θ(−x+ x0) +

(
µR ϕ+(x) + νR ϕ−(x)

)
Θ(x− x0)

(33)

for its wave function. The potential is realized by the matching conditions(
ϕimp.(x0 + 0)
ϕ′
imp.(x0 + 0)

)
= M̃

(
ϕimp.(x0 − 0)
ϕ′
imp.(x0 − 0)

)
, (34)

with

M̃ =

 1+β̃

1−β̃
, 0

α̃
1−β̃2

, 1−β̃

1+β̃

 . (35)

Inserting here the ansatz 33 we arrive at(
µR

νR

)
= T̃

(
µL

νL

)
(36)

with

T̃ = K̃−1M̃K̃, K̃ =

(
ϕ+(x0), ϕ

−(x0)
ϕ′+(x0), ϕ

′−(x0)

)
. (37)

The impurity wave function ϕimp.(x), 33, has been investigated in detail in [26]. For instance,
the scattering problem was considered and the transmission coefficient was calculated. Also,
the bound state solutions were found. These exist for negative α̃. For instance, it was shown
that there is a region with α > 0, where a bound state has positive energy. This is important for
the stability of the vacuum energy since otherwise it would have an imaginary part.

5. The free energy of the impurity
The vacuum energy, E0, of the lattice itself was calculated [15] and, by another method,

in [26], where also the vacuum energy of the impurity was calculated. The free energy of the
comb was calculated in [17]. In this section we calculate the temperature dependent part of the
free energy of the impurity. For this calculation we adopt a modified scheme which appears to
be easier.

In order to take advantage of the formulas presented in Sect. 2, we put the system into a
finite box by imposing Dirichlet boundary conditions at the ends,

ϕ(L1) = 0, ϕ(L2) = 0, (38)
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with L1 < x0 < L2. The boundary points are parameterized as follows,

L1,2 = am1,2 +∆L1,2, m1,2 = [L1,2] + 1, (i = 1, 2). (39)

To remove the box, we will tend m1 → ∞ and m2 → −∞, whereby ∆L1 and ∆L2 remain in
the basic interval, 0 ≤ ∆L1,2 ≤ a. This way it is guaranteed that the position x0 of the impurity
is always in­between L1 and L2.

Basically, we need the box to get discrete frequencies ωj and the corresponding mode
generating function∆(ω). To get it, we insert the ansatz 33 for the impurity wave function into
38, (

µL ϕ+(L1) + νL ϕ−(L1)
)
= 0, (40)(

µR ϕ+(L2) + νR ϕ−(L2)
)
= 0.

We substitute µR and νR using 36 and get a system of equations for µL and νL. This is a
homogeneous system and its determinant must vanish,

∆(ω) ≡ T̃11 ϕ
+(L2)ϕ

−(L1)− T̃22 ϕ
−(L2)ϕ

+(L1) + T̃21 ϕ
−(L2)ϕ

−(L1)− T̃12 ϕ
+(L2)ϕ

+(L1),

= 0. (41)

The solutions of this equation are just the frequencies ωj .
We consider the temperature dependent part of the free energy in 1 and use 3 with 4 to get

∆TF =

∫ ∞

0

dω

π
T ln

(
1− e−βω

) ∂

∂ω
δ(ω). (42)

Now we want to remove the box. For this, as preparation, we use 30 to rewrite 41,

∆(ω) ≡ T̃11 e
iqa(m2−m1)ϕ+(∆L2)ϕ

−(∆L1)− T̃22 e
iqa(m1−m2)ϕ−(∆L2)ϕ

+(∆L1) (43)

+ T̃21 e
iqa(−m2−m1)ϕ−(∆L2)ϕ

−(∆L1)− T̃12 e
iqa(m2+m1)ϕ+(∆L2)ϕ

+(∆L1).

As announced, we tendm2 → ∞ andm1 → −∞ and account for the imaginary part of ω in δ,
4. The imaginary part of q, 28 follows that of ω. In∆(ω+ i0), the second term in 41 dominates
and in ∆(ω − i0), the first term in 41 dominates. The other are exponentially smaller and we
drop them. This way, we get

δ(ω) ≃ qa(m2 −m1) +
1

2i
ln

ϕ+(∆L2)ϕ
−(∆L1)

ϕ−(∆L2)ϕ+(∆L1)
+

1

2i
ln

T̃11

T̃22

. (44)

We rewrite this expression in the form

δ(ω) = δ0 + δ1 + δ2 (45)
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with

δ0 = q(L2 − L1), δ1 = q(∆L1 −∆L2) +
1

2i
ln

ϕ+(∆L2)ϕ
−(∆L1)

ϕ−(∆L2)ϕ+(∆L1)
, (46)

δ2 =
1

2i
ln

T̃11

T̃22

.

Here, δ0 is the contribution from the empty lattice, δ1 is reminiscent of the position of the box
relative to the lattice, and δ3 is the contribution from the impurity.

The contributions from the lattice were considered in [15] and [17] and we focus on the
third part, i.e, on the free energy of the impurity,

∆TF =

∫ ∞

0

dω

π
T ln

(
1− e−βω

) ∂

∂ω
δ2(ω). (47)

Finally, we integrate by parts like in 5,

∆TF = −
∫ ∞

0

dω

π

1

eβω − 1

1

2i
ln

T̃11

T̃22

, (48)

where 46 was used. This representation is convenient for numerical evaluation. An example is
shown in Fig. 1.

-1.0 -0.5 0.5 1.0
Log10{T}

-6

-4

-2

2

4

F

α̃=0.10

α̃=1.0

α̃=10.

Fig. 1. The free energy of a single impurity for several values of its strength α̃ in the background of the
lattice as function of the temperature T . The parameters of the lattice are β = 0, α = 0.3 and x3 = 0.1.

6. Conclusions
In the forgoing sections we presented the theory of how to calculate the free energy of an

impurity in the background of a periodic lattice. Both, lattice and impurity, were modeled by
delta functions, which allows for quite explicit formulas. For this model, the free energy of the
pure lattice was investigated in an earlier paper [17] and showed a very monotone behavior, see
Fig. 4 in the mentioned paper. The contribution from the impurity, calculated in Sect. 5, shows
a non monotone behavior. This is interesting as it gives a hint on possible negative entropy in
the considered system. Examples for that were found earlier, see for instance, Fig. 11 in [17].

From a technical point of view, we would like to mention that the derivation of the free
energy, found in the present paper, is considerable easier as compared to [17]. Especially, with
eq. 46 we got a clear distinction between the individual contributions. This approach will allow
for more detailed investigations of the thermodynamics of impurities in future work.
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