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A geometrodynamical approach to the five-dimensional (5D) spherically symmetric cosmological 

model in the Kaluza–Klein theory is constructed. After dimensional reduction, the 5D Hilbert action is 

reduced to the Einstein form describing the gravitational, electromagnetic, and scalar interacting fields. 

The subsequent transition to the configuration space leads to the supermetric and the Einstein–Hamilton–

Jacobi equation, with the help of which the trajectories in the configuration space are found. Then the 

evolutionary coordinate is restored, and the Cauchy problem is solved to find the time dependence of the 

metric and fields. The configuration corresponds to a cosmological model of the Kantovsky–Sachs type, 

which has a hypercylinder topology and includes scalar and electromagnetic fields with contact interaction. 

Keywords: action, Lagrange function, configuration space, Einstein–Hamilton–Jacobi equation, Cauchy 

problem. 

          Received 12.10.2020; Received in revised form 15.11.2020; Accepted 01.12.2020 

1. Introduction 

The five-dimensional (5D) Kaluza–Klein (KK) theory in the traditional approach [1] is 

based on the following statements: 

1. For a 5D metric ABG  with signature {+, -, -, -, -} of the space M⁵, the cylindricity 

condition is satisfied, according to which, it admits a spacelike Killing vector 5ξ . In the 

corresponding coordinate system, we have 5ξ z=   , which leads to the independence of 

the metric from the fifth coordinate 
4x z= . 

2. The condition that the space M⁵ is closed in the z-coordinate is satisfied, so that 

0 z L  . 

3. 4D physical quantities are introduced with the dimensional reduction of the 5D 

theory. 

This is done by the orthogonal 4+1-splitting of M⁵ and all geometric quantities in it, 

followed by the corresponding conformal mapping into the physical space-time M⁴. 
There are other points of view on 5D gravity, among which we note the approach in 

which matter is induced by 5D geometry [2]. 

We follow the approach [1] and use the standard 5D Einstein–Hilbert action 

5 (5)1

4π
S d x G R

lL
= −  , (1) 

where 
(5)R  is the 5D scalar curvature, det ABG G= , d⁵x=dx0dx¹dx²dx³dx⁴. After integration 

over z within the limits 0 z L   and surface term neglection, it can be rewritten as follows 

4 (4) μν 3ψ μν

,μ ,ν μν

1 1 1
ψ ψ

4π 2 4
S d x h R h e F F

l

− 
= − − − + 

 
 , (2) 

5D metric has the form 

( )
2

(5) 2 ψ 3 2 2ψ 3 μ

μ

A B

ABds G dx dx e ds e dz A dx−= = − + . 
 

(3) 

Here   
2 μ ν

μνds h dx dx=  is   the  4D  physical  metric,  ⁽⁴⁾R  is  the  scalar  curvature   of  M⁴,
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μν ν,μ μ,νF A A= −  is the electromagnetic field tensor, μνdet ,h h= μ

,μψ ψ x=   , 4 0 1 2 3.d x dx dx dx dx=   

The resulting action has a natural physical meaning and describes a system of interacting 

scalar, electromagnetic, and gravitational fields. Moreover, in addition to the usual 

minimal interaction, it also contains the contact interaction of scalar and electromagnetic 

field characteristic of the 5D KK theory. 

The solution of the equations that follow from action (2) was considered in many 

papers (see, for example, [3-5]). 

2. 5D spherically symmetric T-model 

In the spherically symmetric case, the "T-solution" of the KK theory admits a 

spacelike Killing vector 5ξ r=   . Then the 5D and 4D metrics can be written as 

( )
2

(5) 2 ψ/ 3 2 2ψ 3 0φds e ds e dz dx−= − + , (4) 

( )( ) ( ) ( )
2

2 0 0 0 2 2 0 2σds f x dx h x dr R x d= − − . (5) 

Here all quantities depend only on the time coordinate x0; in addition, we have 
2 2 2 2σ θ sin θ αd d d= +  and 

01 1,0 ,0φE F A= = = . Integrating over angles and over the 

coordinate r within the limits (-l/2, l/2), action (2), up to surface terms, can be rewritten as 

follows 

( )0 2 3ψ 2 2 2

,0 ,0 ,0,0

1 1 1
2 φ ψ 2

2 2

h
S dx R Rh R e R fh

ffh

−
   

= − + + +  
   

 . (6) 

To orthogonalize the action, we turn to the new field variables: 

( )ω λ /22 λ λ, ,f N e h e R e
−−= = = . (7) 

Then the 4D metric and action (6) can be represented as  

( )
2

2 λ 2 0 ω 2 λ 2ds e N dx e d e dr−  = − −
  

, (8) 

( )0 1 02S Ldx N T N dx−= = +   (9) 

where L is the Lagrangian of the configuration, T is the kinetic part of the Lagrangian 

( )ω 2 2 λ 3ψ 2 2

,0 ,0 ,0 ,0

1
λ ω φ ψ

2
T e e− −= − + + . (10) 

Varying S with respect to N, we obtain the constraint 

2

δ 1
2 0

δ 2

L L T

N N c N

  
= = − + = 
  

. (11) 

Hence, it follows that / 2N T= . This relation allows us to eliminate the factor N from 

the Lagrangian L. As a result, we find that 2 2L T=  and the action S can be rewritten as 

follows 

( )0 0 ω 2 2 λ 3ψ 2 2

,0 ,0 ,0 ,02 2 2 λ ω φ ψS T dx dx e e− −= = − + +  . (12) 

Hence it can be seen that 
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( )ω 2 2 λ 3ψ 2 22 λ ω φ ψ 2 ΩS e d d e d d d− −= − + + =   (13) 

Where 

( )2 ω 2 2 λ 3ψ 2 2Ω λ ω φ ψd e d d e d d− −= − + +  (14) 

is the metric of the configuration space (CS) of field variables {λ, ω, φ, ψ}. 

Thus, from the initial action, we pass to the action of the system in the CS. It can be 

shown that geodesic equations that follow from the resulting configuration metric (14), 

together with the constraint, are equivalent to the Einstein equations. These geodesics can 

be found from the Einstein–Hamilton–Jacobi (EHJ) equation for the metric dΩ² (14) of 

the CS: 

2 22 2

λ 3ψ ω4
λ ω φ ψ

S S S S
e e+          

− + + =      
          

 (15) 

3. Equations solution for the spherically symmetric T-model of the 5D KK theory 

After transforming field variables  

ξ λ 3ψ, η 3 λ ψ= + = − +  (16) 

the EHJ equation is transformed into an equation with separable variables. Its solution 

can be written as  

ω 2 ξ1
φ η ω 4 ξ 4

2

qS q g d a e d a g q e= + + − + − −   (17) 

where a is a separation constant, q and g are constants that have the meaning of electric 

and scalar charges. It is easy to see that only the case a> 4g² is possible.  

For convenience, we introduce constants m and b using the formulas 

2 2 2 2 2 24 0,   = 4 + 0a m q g b a g m q= + +  − =   (18) 

where the constant m can be interpreted as a configuration mass. Note that the admissible 

range of the variables ω, ξ is determined by the inequalities ω0 / 4e a   and 
ξ 20 /e b q  .( 

To find the trajectories, we differentiate the action by the parameters {q, g, a} and 

equate the result with new constants: 

( )

( )

( ) ( )

φ ξ ,
2

η ξ ,

1 1
ω ξ .

2 4

q

g

a

S q
H C

q

S
qgK C

g

S
M K C

a


= − =




= − =



= + =



 (19) 

 

)()()η=-√3Here , ,q g aC C C  are some constants, and the functions M(ω), K(ξ), H(ξ) are 

defined by the following integrals 

( )
ω

ω ω

ω 1 4
ω ln

4 4

d a a e
M

aa e a a e

− −
= =

− + −
 , (20) 



V.D. Gladush 

54 

( )
2 ξ

2 ξ 2 ξ

ξ 1
ξ ln

b b q ed
K

bb q e b b q e

− −
= =

− + −
 , (21) 

( )
ξ

2 ξ

22 ξ

ξ 2
ξ

e d
H b q e

qb q e
= = − −

−
 . 

(22) 

This set of equations determines the trajectories of the system in the CS of field 

variables: ω, ξ,φ,η . In order to find their dependence on time, it is necessary to 

reconstruct time as an evolutionary parameter x0. After that, the Cauchy problem should 

be solved for the given initial conditions at the chosen initial moment of time. For this 

purpose, we first find the equation for the function ω = ω(x0) from the relations for the 

momentum conjugate to the variable ω: 

ω

,0ω ω

L S
P

 
= =
 

. (23) 

Hence, taking into account formulas (9), (10), and (16), we obtain the differential 

equation 

ω ω

0

1 ω
4

d
e a e

N dx
− = − . (24) 

Choosing the calibration N = 1, we find 

( )
2

ω 04e a x= − . (25) 

Moreover, we have / 4 0a e  , and 
0| | /2 x a . Substituting the expression for eω into 

the formula (20), we find 

( ) ( )
1

ω lnM M U U
a

= =  (26) 

where we introduce the notation 

0

0

/ 2
0 1

/ 2

a x
U

a x

−
 = 

+
. (27) 

Now we can specify initial data. Bearing in mind the condition 
0| | /2x a , it is 

natural to define the initial time as x0 = 0. Therefore, we take the following initial 

conditions for the field variables {λ, ψ, φ, ξ, η, eω} at x0 = 0: 

0ω

0 0 0 0 0λ , ψ , φ , ξ , η , / 4e a=  (28) 

Then formulas (20), (21), and (25)–(27) for x0 = 0 imply 

( ) ( ) ( )0 0

01, ω 0U x M M x= = =  (29) 

( )

( )

0

0

0

2 ξ

0 0 2 ξ

2 ξ
0 0 2

1
ξ ln ,

,
2

ξ .

b b q e
K K

b b b q e

H H b q e
q

 − −
= =

 + −

 = = − −


 (30) 
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To construct a solution, it is convenient to rewrite the equation set (19) as follows 

( )

( )

( ) ( )

φ ξ ,
2

η 4 8 ,

2 ω ξ 4 .

q

g a

a

q
H C

gM U C gC

M K C


− =


+ = +


+ =




 (31) 

Then, taking into account the initial values (29), from here at x0 = 0 we obtain  

0 0 0 0φ , η 8 , 4
2

q g a a

q
H C C gC K C− = = + = . (32) 

Using these relations, we exclude the unknown constants , ,q g aC C C  from the equations 

of motion (31). As a result, the equation system (31) takes the form 

( )( )

( )

( ) ( )

0 0

0

0

φ φ ξ ,
2

η η 4 ,

2 ω ξ .

q
H H

gM U

M K K


− = −


− = −


= −



 (33) 

Taking into account formulas (21), (22), and (26), as well as initial values (30), this 

system can be rewritten as follows 

( )0

0

0

2 ξ 2 ξ

0

0

2 ξ 2 ξ

2 ξ 2 ξ

1
φ φ ,

4
η η ln ,

ln ln lnp

b q e b q e
q

g
U

a

b b q e b b q e
U

b b q e b b q e


 − = − − − −



− = −

 − − − −

= −
+ − + −

 (34) 

where 2p b a= . Next, we express the quantities φ and 
ξe through the function U. For 

this purpose, we rewrite the last equation in the system (34) as follows 
2 ξ

2 ξ

b b q e
V

b b q e

− −
=

+ −
. (35) 

Here we introduce the notations 

0

2
ξ1

, 1 1
1

pB q
V U B e

B b

−−
= = − 

+
. (36) 

Note that, by virtue of the inequality 0 < U < 1, for admissible values of ξ₀ (-∞ < ξ₀ < 

<ln(b/q²) it follows that 0 < V  < 1. Solving equation (35) with respect to 
ξe , we obtain  

( )
( )ξ 1/2 1/2

22 2

4 4

1

b V b
e V V

q qV

−= = +
+

. (37) 

Substituting the expression for V from (36) into the formula (37), we find  
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2
1/2 1/2

ξ /2 /21 1

2 1 1
p pq B B

e U U
B B B

−
−

−
  − −    

= +     + +      
. (38) 

Further, taking into account the relations 

( )
( )

0

0

ξ2
2 ξ

22

1
1

1 1

B b q e
B e

B q b B

−−
= − =

+ +
, (39) 

the expression (38) for 
ξe  can be rewritten as follows 

0ξξ /2 /21 1

2 2

p pB B
e e U U − + −   
= +    

    
. (40) 

Let us now find the potential of the electric field φ. Substituting the expression for 
ξe  

from formula (37) into the first equation of the system (34) and taking into account (36), 

we find  

0

1
φ φ

1

q V
B

Vb

− 
− = − 

+ 
. 

Finally, substituting V and B from relations (36) into this formula, we obtain 

( )
( )

0ξ

0

1
φ φ

1 1

p

p

U eq

B B Ub

−
− =

− + +
. (41) 

Thus, relations (25), (26), (40), (41), and (34) for η represent the desired solution to 

the Cauchy problem with initial data (28) and determine the evolution of the spherically 

symmetric 5D T-configuration in terms of the field variables  ω, ξ,φ,η . 

4. Conclusions 

The paper demonstrates the effectiveness of the Hamilton–Jacobi method in finding 

solutions to the Einstein equations for systems with one evolutionary coordinate and 

particularly for constructing spherically symmetric T-configurations of the equations of 

5D KK theory with a degenerate Lagrangian. In the CS, geodesics correspond to the 

required configurations. The direct solution of the EHJ equation leads to geodesics in an 

implicit form. Along the way, with finding the CS supermetric, the differential-geometric 

structure of the СS is clarified, its vectors and Killing tensors and the corresponding 

conservation laws are found, and the CS curvature tensor is calculated. The EHJ method 

for T-configurations has its own peculiarities. When we transit from CS to the coordinate 

space, it becomes necessary to restore time. For this, the Cauchy problem is solved with 

initial data on the hypercylinder of an initial radius. 
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