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Equilibrium fluctuations of some set of parameters in the states described by the canonical Gibbs 

distribution are investigated. In the theory of phase transitions of the second kind, these parameters are 

components of the order parameter. The microscopic realization of the Landau definition of the effective 

Hamiltonian of the system for studying the equilibrium fluctuations of the specified system of parameters is 

discussed in the terms of the probability density of their values. A general formula for this function is 

obtained and it is expressed through the equilibrium correlation functions of these parameters. An 

expression for the effective Hamiltonian in terms of deviations of the parameters from their equilibrium 

values is obtained. The deviations are considered small for conducting the calculations. The possibility of 

calculating the exact free energy of the system using the found effective Hamiltonian is discussed. 

In the microscopic theory, the implementation of the Landau definition of nonequilibrium 

thermodynamic potentials introduced in his phenomenological theory of phase transitions of the second 

kind is investigated. Nonequilibrium states of a fluctuating system described with some sets of parameters 

are considered. A general formula for nonequilibrium free energy expressed through the correlation 

functions of these parameters is obtained as for the effective Hamiltonian above. Like the previous case, the 

free energy expression via parameter deviations from the equilibrium values is obtained and small 

deviations are considered for calculations. The idea of the identity of the effective Hamiltonian of the system 

and its nonequilibrium free energy is discussed in connection with the Boltzmann distribution. The 

Gaussian approximation of both developed formalisms is considered. 

A generalization of the constructed theory for the case of spatially inhomogeneous states and the 

study of long-wave fluctuations are developed. 

Keywords: equilibrium fluctuations, effective Hamiltonian, nonequilibrium free energy, the Boltzmann 

principle, phase transitions of the second kind, correlation functions, fluctuations close to equilibrium, long-wave 

fluctuations. 
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1. Introduction 

The investigation of equilibrium fluctuations is a classic problem of statistical 

mechanics [1]. They are due to the fact that the observed values of physical quantities differ 

from their average values, because even the equilibrium system is dynamic one. To some 

extent, fluctuations depend on the conditions in which the system is. For certainty, we 

consider a system whose equilibrium state is described by the canonical Gibbs distribution 

ˆF H

Tw e

−

= ,         Sp 1w = .   
(1) 

The system has a fixed temperature T , volume V , external fields, and the number of 

particles of all components. Hereinafter, the microscopic value of a physical quantity â  as a 

function of the coordinates and momentums of the particles is denoted by a hat. The integral 

over the phase space together with the required factors is denoted by the symbol Sp . This 

shortens the notation of formulas and brings together the notation of classical and quantum 

theory, in which the physical quantity operator is denoted by â . 

The free energy of the system is determined from the normalization condition (1). The 

average values of physical quantities are calculated by the formula 

ˆSpa wa= . (2) 

Let us set the problem of studying the fluctuations of some system of physical quantities ηa
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(the index a  and then the indices a , b , c  number these quantities). In the theory of 

phase transitions of the second kind, the components of the order parameter are chosen as 

these parameters. These fluctuations are completely described by the function of their 

distribution [1] 

ˆ( ) Sp ( )w w =  − ,                ˆ ˆ( ) ( )a a

a

 −    − ; 

( ) 1d w  = ,         η ηa

a

d d



−

=  ,  

(3) 

since the formula  

ˆ ˆf ( ) Sp f ( ) ( )f ( )w d w =  =    . (4) 

is valid for an arbitrary function f ( ) .  

The fluctuation state of the system can be considered as a nonequilibrium state, 

which is described by the parameters of the reduced description a . The Boltzmann 

formula  

( )

( )

F

Tw Ae


−

 =  (5) 

is traditionally associated with the function ( )w   [1, 2]. Here (η)F  is the free energy of 

the system in the specified nonequilibrium state ( A  is normalization factor). The function 

( )F   is also called the effective Hamiltonian in the space of parameters ηa  [2]. The 

definition of nonequilibrium thermodynamic potential was introduced by Landau in his 

theory of phase transitions of the second kind as some equilibrium thermodynamic 

potential for which the order parameters are eigenvariables [1, 3, 4]. It was considered 

clear that this could be done by a Legendre transformation of thermodynamic potential in 

the presence of an external field [4, 5]. This explains why Landau did not use the term 

"nonequilibrium thermodynamic potential". A little later after Landau, this idea of 

introducing nonequilibrium thermodynamic potential was proposed by Leontovich [6] 

(see also [7]) on the basis of the idea that the nonequilibrium state of a system can be 

considered as an equilibrium one in the presence of some external field. 

According to Pitaevskii (see [1]), the definition of the effective Hamiltonian by the 

formula (η)H  

( )

( )

F H

Tw e

− 

 =  (6) 

belongs to Landau. Here F  is the exact free energy of the system, and the function (η)w  

is defined in (3). Formula (5) is a complete analogue of the canonical Gibbs distribution 

(1), which describes the system in phase space. It can be used according to Landau [1] to 

calculate the free energy of the system. 

Formulas (1), (3), and (5) give the following expression for the effective Landau 

Hamiltonian ( )H   

ˆ

ˆ( ) lnSp ( )

H

TH T e
−

 = −  − , (7) 

which is directly proposed by Landau (see [1]). 
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Note that the present work is a continuation of our papers [8, 9]. The first of them 

[8] was devoted to the development of an expression for nonequilibrium free energy, 

based on the ideas of Leontovich’s work [6, 7]. Our current paper describes the course of 

Landau’s ideas in connection with the introduction of nonequilibrium thermodynamic 

potentials. The second work [9] is devoted to the construction of an expression for an 

effective Hamiltonian of the system (η)H . In the present work, the derivation of the basic 

formula for the probability density is simplified and an in-depth analysis of the 

Hamiltonian (η)H  construction problem is performed. 

Consideration of these problems was largely stimulated by the development of the 

theory of phase transitions of the second kind, the main provisions of which were 

developed by Landau [1, 2]. It should be noted that this theory is mainly 

phenomenological (see, for example, [2, 10, 11]). However, some studies are devoted to 

the development of microscopic theory and in particular the calculation of nonequilibrium 

free energy. See a thorough review of the microscopic theory in the vicinity of the critical 

point of a liquid-vapor system in [12]. 

The structure of the work is as follows. Section 2 is devoted to the implementation 

of the definition of the Landau effective Hamiltonian of a system in the microscopic 

theory. Section 3 gives a microscopic theory of the construction of nonequilibrium free 

energy of the system based on its Landau definition. Section 4 proposes generalization of 

the developed theory for non-homogeneous states and long-wave fluctuations. 

2. The effective Landau Hamiltonian 

 Let us start with the calculation of the equilibrium distribution function (η)w  of 

fluctuations of some parameters ηa  in the vicinity of the equilibrium state of the system. 

Given the expansion of the  -functions in the Fourier integral, from formulas (1) and (3) 

we have 

ˆ( )1
ˆ( ) Sp ( ) Sp

(2 )

a a a
a

i u

s
w w du we

 −
 =  − = =

  , 

ˆ ˆ

1
Sp

(2 )

a aaa a
a

H iu TF i u
T T

s
e due e

+ 
 −


=

   

(8) 

where is denoted 

a

a

du du= , a

a

du du



−

=   (9) 

( s  is the number of the a ). 

 For further transformations, it is convenient to use the canonical Gibbs 

distribution in the presence of an external field ah  introduced through the help of 

microscopic variables ˆ
a  that correspond to the parameters ηa   

ˆ ˆ( ) [ ]

( )

a aa
F h H h

Tw h e

− + 

=  , Sp ( ) 1w h = . 
(10) 

In thermodynamics, different sets of independent variables can be selected. It is 

convenient for us to consider the free energy ( )F h  and the canonical Gibbs distribution 
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( )w h  in the presence of a field as a function of the field ah . Hence for the trace in 

formula (8) such an expression through the free energy ( )F h  in the field presence is 

found 

ˆ ˆ ( )

Sp

a aa
H iu T F ihT

T Te e

+ 
− −



= . 
(11) 

Taking into account (11), expression (8) for the probability density (η)w  of the 

parameters ηa  takes the form 

( )
1

( )
(2 )

a a
a

F F iuTi u
T

s
w du e e

−
 =

   (12) 

 In our previous work [8] it was observed that the free energy ( )F h  in the 

presence of an external field can be expressed through a generating function ( )h  for the 

mean values of the products of quantities ˆ /a T− . Indeed, from (1) and (10) the formula 

ˆ ˆˆ( )

Sp Sp

a a
a a

a a

F h H Fh h
T TT T Te e e e we

 
− −− − − 

= =  
(13) 

follows, that is 

( )

( )

F F h

Te h

−

=  (14) 

where the generating function ( )h  is introduced for the average values of the products 

of quantities η /a T−  in the absence of an external field 

1 1

1

ˆ

1 ...

( 1)
ˆ ˆ( ) 1 ... ...

!

a
a

a

n n

n

nh
T

a a a an
n a a

h e h h
n T


−

=

 −
 = +    . (15) 

 Instead of averages
1

ˆ ˆ...
na a  , it is convenient to introduce correlation 

functions
1

ˆ ˆ...
na a   , which are determined sequentially by formulas 

1 2 1 2 1 2
ˆ ˆ ˆ ˆ ˆ ˆ

a a a a a a  =   +    , 

1 2 3 1 2 3 1 2 3 2 3 1 1 3 2
ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ

a a a a a a a a a a a a a a a   =    +    +    +    +  

1 2 3
ˆ ˆ ˆ

a a a+     

(16) 

and so on. The generating function for correlation functions of quantities ˆ /a T−  

1 1

12 ...

( 1)
ˆ ˆ( ) ... ...

! n n

n

n

a a a an
n a a

h h h
n T



=

−
     , (17) 

is related with the generating function of the averages by the formula 
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0( ) exp ( )a
aa

h h h
T

 
= − + 

 
       ( 0

ˆ
a a   ) (18) 

(see in [13, 14] pages 116 and 12, respectively). Formulas (14) and (18) give the 

following expression for the free energy of the system in the presence of the external field 

ah  

0( ) ( )a a

a

F h F h T h= +  −  (19) 

(obtained in our work [8]). Given this relationship, formula (12) for the fluctuation 

distribution function acquires the final form 

( )1
( )

(2 )

a a
a

i u
iuT

s
w due e


 =

  ,              0a a a   − . (20) 

Based on this formula taking into account definition (5), one can find the effective 

Hamiltonian ( )H   and distribution ( )w   for states in the vicinity of the equilibrium 

state 

( ) ln ( )H F T w = −  ,           
1 1

1

0 ...

1 ...

( ) ...
n n

n

a a a a

n a a

w A A
+

=

 = +    , 

( )
0

1

(2 )

iuT

s
A due

  ,     
1 1

( )
... ...

(2 ) !n n

n
iuT

a a a as

i
A due u u

n


   

(21) 

(these expressions were not obtained in our work [9]). Taking into account the Taylor 

expansion 

2 3 4 5
0 1 2 3 4ln[ ( )]b b x b x b x b x O x+ + + + + =  

2 3
2 331 2 1 1 2 1

0 2 2 3
0 0 00 0 0

ln ( )
2 3

bb b b b b b
b x x x

b b bb b b

 
= + + − + − + + 

 
 

2 2 4
4 51 34 2 1 2 1

2 2 3 4
0 0 0 0 0

( )
2 4

b bb b b b b
x O x

b b b b b

 
+ − − + − + 
 

, 

(22) 

one can get an effective Hamiltonian with the desired accuracy. Particularly, in the 

Gaussian approximation we have 

3
0

,0

1 1
( ) ln ( )

2
a a ab a b

a a b

H F T A A D O
A


 = − +  −   +  

 
  , 

0 0

2 1
( )
2

ab a b abD A A A
A A

 −  

(23) 
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(here notations are somewhat simplified: 1a a→ , 2a b→ ). Formula (21) 

simultaneously gives the following expression for the probability density ( )w   of 

parameter values a  

3
0

,0

1 1
( ) exp ( )

2
a a ab a b

a a b

w A A D O
A

 
 =  −   +  

 
  . (24) 

Expression (24) shows that the most probable values a%  of the parameters a  differ 

due to fluctuations from their average values 0a  by some quantity a  

a a a =  + % ,       0a a a =  − ,        a a a =  −% % ,         

, ,

a a ab a b ab a b

a a b a b

A D D +   =   +   % %  

,

a a ab a b

a a b

A D+  +    ,                
1

0

1
a ab bb

D A
A

−    

(25) 

(the transition from a to a%  zeroes the linear in a% contributions). As a result, the 

probability density in the Gaussian approximation is given by the formula 

1/2

2

,

det 1
( ) exp

2(2 )
ab a bs

a b

D
w D

  
 = −    

   
 % % . (26) 

It should be noted that function (24) is normalized to 1 only taking into account the whole 

series by powers ηa  (see (20)). In expression (26), compared with (24), the 

normalization factor in the probability density is changed, because in (26) the series in 

ηa  degrees is broken. It makes some sense to determine the free energy of the system 

2F  and the Landau Hamiltonian 2 (η)H  in the Gaussian approximation on the basis of 

(6) and (26), by formulas 

2 2 ( )

2( )

F H

Tw e

− 

  ,      2η (η) 1d w = ; 

2

,

( )
2

ab a b

a b

T
H D =   % % ,         2

det
ln

(2π)s

D
F T=  

(27) 

Our results show that Landau’s idea [1] to use the effective Hamiltonian to calculate 

the total free energy of the system F  by the formula 

( )F H

T Te d e


− −

=  , (28) 

which follows from the normalization condition (3) and definition (6), is not realized. 

This is because our expression for the effective Hamiltonian (21) turns formula (28) into 

identity. At the same time, in the literature, formula (28) is widely used with a 

phenomenological effective Hamiltonian of the form 
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1 1 1 2 1 2

1 1 2

0

,

( ) ( , ) ( , ) ( , )a a a a a a

a a a

H F T V T V A T V = +   +   + 

1 2 3 1 2 3 1 2 3 4 1 2 3 4

1 2 3 1 2 3 4, , , , ,

( , ) ( , )a a a a a a a a a a a a a a

a a a a a a a

C T V B T V+    +      . 
(29) 

(see, for example, [2, 12, 13]). It was proposed by Landau in his theory of phase 

transitions of the second kind for states in the vicinity of the phase transition point. The 

role of parameters ηa  in this case is played by the order parameter, which in this situation 

is small. Taking into account the system symmetry usually simplifies the coefficients in 

this expression. 

It should be noted that our results (23) and (24) are complicated because they 

contain coefficients aA , abA , which are expressed by formulas (17) and (21) through all 

equilibrium correlation functions of the system 
1

ˆ ˆ...
na a    in the absence of the external 

field ah . Exact calculation of the values aA , abA  by the formulas (17) and (21) can only 

be done neglecting correlations 
1

ˆ ˆ...
na a    with 3n   and replacing ( )iTu  by 

2( )iTu  

2

,

1
( )

2
a b ab

a b

iTu u u= −  С , ˆ ˆ
ab a b   C . (29) 

In this approximation, the distribution function (η)w , according to (20), is given by an 

exact formula 

1

,

11/2

2

2

det
( )

(2 )

ab a b

a b

s
w e

−−   
 =  

 

CC
 (30) 

because 

1

, ,

1/2
(1/2) (1/2)(2 )

det

ab a b ab a ba aa b a ba

s
u u iu

due e e
−− −      =  

 


C C

C
. (31) 

The distribution (30) in comparison with (26) can be called a simplified Gaussian. 

In our work [9] the problem of effective Hamiltonian realization in Landau’s 

definition was considered in the macroscopic theory. Expression (23) for (η)H  was 

obtained in a more complex way than in the present paper, but no attention was paid to 

the validity of formula (24) for the distribution function (η)w . Also, no conclusion was 

made about the impossibility of calculating the total free energy of the system using 

formula (28) with the Landau Hamiltonian. 

3. Nonequilibrium Landau free energy 

The definition of the nonequilibrium thermodynamic potential of the system 

underlies the Landau theory of phase transitions of the second kind. Above we considered 

the description of the equilibrium state of the system in the presence of an external 

field ah , which is introduced through the microscopic values η̂a  of some parameters ηa  

in the form η̂a aa
h . The canonical Gibbs distribution function in such a situation ( )w h  
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is given by formula (10). Consider in more detail the thermodynamics of such a system. 

Internal energy E , observed (average) value of the parameter ηa  and thermodynamic 

force aA  corresponding to the external parameter ah , elementary work R  are given by 

standard formulas 

ˆ ˆSp ( )( η )a aa
E w h H h= + ,        ˆη Sp ( )ηa aw h= ,     

ˆ ˆSp ( ) ( η ) ηa a a aa
a

A w h H h
h


= − + = −


 ,   ηa a a aa a

R A dh dh = = −  . 
(32) 

The basic relation of thermodynamics for the free energy ( )F h E TS= −  follows from 

the equations of the first and second laws of thermodynamics 

Q dE R = + ,       Q TdS =  (33) 

and has the form 

( ) ηa aa
dF h SdT dh= − + . (34) 

Here we use the notation of free energy by ( )F h  from expression (10), although free 

energy can be expressed in different thermodynamic variables too. At the same time, the 

field ah  is its eigenvariable for the potential ( )F h . According to Landau [1] (see also [4, 

5]), the nonequilibrium thermodynamic potential (η)LF  coincides with the equilibrium 

potential, which is given by the Legendre transformation 

(η) ( ) ηL a aa
F F h h= − . (35) 

Parameters ηa  are eigenvariables for this potential because 

(η) ηL a aa
dF SdT h d= − −  (36) 

Finally, the nonequilibrium free energy of the system in the presence of an external field 

is given by the Landau formula 

neq (η, ) (η) ηL a aa
F h F h= +  (37) 

where ηa  and ah  are independent variables.  

 In the case of a small field ah , the function (η)LF  can be calculated explicitly 

[8]. First, formula (19) taking into account (17) gives the expansion of the free energy in 

the presence of a field ( )F h  in a series in powers of the field ah  

1 1

1

1

0 1
2 ...

( 1)
ˆ ˆ( ) ... ...

! n n

n

n

a a a a a an
a n a a

F h F h h h
n T

−

−
=

−
= +  +      . (38) 

Then the basic thermodynamic relation (33) gives formula η ( ) /a aF h h=    and 

therefore from (38) expansion of ηa  in powers of the field  

1 1

1

0

1 ...

( 1)
... ...

! n n

n

n

a a a a a a an
n a a

h h
n T



=

−
 =  +      . (39) 



Realization of the Landau definitions of effective Hamiltonian and nonequilibrium free energy in microscopic theory 

 71 

The potential LF  as a function of the field ah according to (35), (38), and (39) has the 

form 

1 1

1

1
2 ...

( 1)( 1)
ˆ ˆ... ...

! n n

n

n

L a a a an
n a a

n
F F h h

n T



−
=

− −
= +      (40) 

From formula (39) for small deviations 0a a a =  −  one can find an expression for 

the field ah  through the deviations. Then formula (39) will give nonequilibrium free 

energy in the absence of an external field (η)LF . In the Gaussian approximation we have 

1 3

,
( ) ( )

2
L ab a ba b

T
F F O− = +   +  C , 

1 2( ) ( )a ab bb
h T O− = −  +  C ,         ˆ ˆ

ab a b=   C . 

(41) 

It was noted above that in the literature [2] nonequilibrium free energy is identified with 

the effective Hamiltonian and therefore, according to Boltzmann’s formula (5), the free 

energy (40) gives the probability density ( )w   that coincides with the simplified 

Gaussian distribution (30). Thus, Landau’s definition of nonequilibrium free energy leads 

to the same result as Landau’s theory of the effective Hamiltonian, if in the latter neglect 

all correlations except binary ones. 

4. Spatially inhomogeneous states 

When considering spatially inhomogeneous states, the role of parameters a  is 

played by local quantities ( )i x  where nx  is a point of three-dimensional space. Periodic 

boundary conditions are applied to all local quantities, assuming that the system is placed 

in a vessel V  in the form of a cube with an edge
1/3V . Arbitrary functions ( )f x  are 

expanded into the Fourier series by formulas 

1
( ) i k x

k

k

f x f e
V

=  ,         
3 ( ) i k x

k

V

f d x f x e−  , (42) 

where the wave vector lk  runs the value 

1/32 /l lk n V=  ,        0, 1, 2,...ln =    (43) 

At the end of the calculations, the thermodynamic boundary transition should be 

performed, in which the sums are replaced by the integral according to the rule 

3

3
... ...

(2 )V
k V

V
d k

→
⎯⎯⎯→


   (44) 

Long-wave fluctuations, which are responsible for the singular behavior of the 

observed quantities, are usually considered. In this case, the Fourier components ik  of 

the parameter deviations ( )i x  from the equilibrium values are considered to be 

nonzero only for small lk . In this case, the parameters ( )i x  describe weak 
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inhomogeneous states. For arbitrary functions ( )f x  and ( )g x , according to definition 

(42), the formula is valid 

3 1
( ) ( ) k k

kV

d xf x g x f g
V

−=  . (45) 

Hence the following rules for the consideration of spatially inhomogeneous states, which 

show that this consideration is embedded in above results, are valid 

( , ) ( , )a i x i k→ → ,       ( )a i ikx → → ,       ( )a i ikh h x h→ → ; 

3

,

1
... ... ...

a i i kV

d x
V

→ →   ;    ( , ) ( , )ab ii iix x k k  → →C C C . 

(46) 

Further these substitutions are used to analyze the Landau free energy ( )LF   given 

by formula (41). It is convenient to return to formulas (39) and (40) that give 

21
( )a ab ba

h O h
T

 = − + C ,       
31

( )
2

L ab a bab
F F h h O h

T
= + + C  (47) 

In spatially inhomogeneous states in terms of the Fourier components, these relations in 

accordance with (42) and (46) take the form 

* 21 1
( , ) ( )ik ii i k

i k

k k h O h
T V

  

 

 = − +C ,  

* * 3

2

1 1
( , ) ( )

2
L ii ik i k

iki k

F F k k h h O h
T V

  

 

= + +C .  

(48) 

Further the equilibrium state of the system in the absence of the external field is 

considered to be spatially homogeneous. In this case, the correlation functions are 

translationally invariant and therefore we have consistently 

3 3ˆ ˆ ˆ ˆ( , ) ( ) ( ) ik x ik x
ii ik i k i i

V V

k k d x d x x x e
 − −

     =    =    = C  

3 3 ( )ˆ ˆ( ) ( ) i k k x ik x
i i

V
V V x

d x d x x x x e
  − + −


→

−

 =   +  =   

3 ( ) 3
',

ˆ ˆ(0) ( ) ( )i k k x ik x
i i k k ii

V

d xe d x x e V k
  − + −

 −
 =    =   С , 

3 ˆ ˆ( ) (0) ( ) i k x
ii i ik d x x e    C ,          

* ( ) ( )ii i ik k =С C  

(49) 

( ˆ ˆ(0) ( ) 0i i x   =  when cor| |x x R−  ; corR  is a radius of equilibrium correlations). 

Taking into account (49), from formulas (48) the expression for the nonequilibrium 

Landau free energy in the spatially inhomogeneous state of the system is obtained. 

1 * 31
( ) ( )

2
L ii ik i k

ii k

T
F F k O

V

−
 



= +   +  C  (50) 
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Since fluctuations, for which quantities ik  are non-zero only for small lk , are 

considered, function 
1( )ii k−
C  can be expanded in a series in powers of lk . The structure 

of such a series depends on the symmetry of the equilibrium state of the system and in the 

simplest case has the form 

1( ) 2( ) /ii ii ii nl n lk a g k k T−
  =  −  C  (51) 

( a , g  are some real functions of the temperature), which gives the nonequilibrium free 

energy of the form 

3 2
( ) ( )

( )
i i

L i

i i l lV

x x
F F d x a x g

x x

  
= +  + 

  
  . (52) 

Contributions of this kind to nonequilibrium free energy are used in the theory of phase 

transitions of the second kind to study long-wave fluctuations of the order parameter (see, 

for example, [1, 2, 10, 11]). 

4. Conclusions 

For an arbitrary system described by classical mechanics, a microscopic theory has 

been developed to calculate the probability density ( )w   of the values of some set of 

parameters a , which give the reduced description of fluctuations in the system in the 

vicinity of the equilibrium state. To do this, the approach of our previous work [9] is 

simplified and ( )w   is expressed through all equilibrium correlation functions of the 

parameters a . The expression for ( )w   in microscopic theory, but only through binary 

correlation function, was previously obtained by Leontovich [6, 7]. The definition of the 

Landau effective Hamiltonian of the system ( )H   is discussed. It is found that this 

definition gives an expression for ( )H F −  (where F  is the exact free energy of the 

system) and does not allow calculating F  through the statistical integral corresponding 

to the Landau Hamiltonian ( )H  . 

For an arbitrary system, which is described by classical mechanics, a microscopic 

realization of the Landau definition of the nonequilibrium free energy of the system is 

developed for a state having a reduced description with some set of parameters a . This 

free energy is an equilibrium thermodynamic potential, the eigenvariables of which are 

parameters a . We introduced this potential through the Legendre transformation of the 

free energy of the system in the presence of an external field. There is no clear reference 

to such a procedure in Landau’s works (see [1, 3, 4]), but [5] states that it is his idea. 

Somewhat later, a similar definition of nonequilibrium free energy was proposed by 

Leontovich [6, 7], but also without its microscopic realization. In the literature, 

nonequilibrium free energy is identified with the effective Hamiltonian [2]. We have 

established that the Landau nonequilibrium free energy as an effective Hamiltonian, when 

used in the Boltzmann formula, gives an expression for the fluctuation distribution 

function ( )w   that takes into account only binary correlations of the parameters a . 

On the example of the Landau nonequilibrium free energy it is shown that the 

description of fluctuations in spatially inhomogeneous states can be included into the 

developed here theory. In terms of the microscopic theory, the origin of the contributions 
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to free energy, which depend on the gradients of the parameters describing the 

fluctuations in the system, is clarified. 
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