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On the base of the Boltzmann kinetic equation, hydrodynamics of a dilute gas in the presence of the 

strong external potential field is investigated. First of all, a gravitational field is meant, because the 

consistent development of hydrodynamics in this environment   is of great practical importance. In the 

present paper it is assumed that it is possible to neglect the influence of the field on the particle collisions. 

The study is based on the Chapman–Enskog method in a Bogolyubov’s formulation, which uses the idea of 

the functional hypothesis. Consideration is limited to steady gas states, which are subjected to a simpler 

experimental study. Chemical potential 0µ  of the gas at the point where the external field has zero value 

and its temperature T  are selected as the reduced description parameters of the system. In equilibrium, in 

the presence of the field, these values do not depend on the coordinates. It is assumed that in the 

hydrodynamic states T  and 0µ  are weakly dependent on the coordinates and therefore their gradients, 

considered on the scale of the free path length of the gas, are small. The kinetic equation, accounting for the 

functional hypothesis, gives an integro-differential equation for a gas distribution function at the 

hydrodynamic stage of evolution. This equation is solved in perturbation theory in gradients of T  and 0µ . 

The main approximation is analyzed for possibility of the system to be in a local equilibrium by means of 

comparing it with an equilibrium distribution function. Next, the distribution function is calculated in the 

first approximation in gradients and it is expressed in terms of solutions pA , pB  of some first kind integral 

Fredholm equations. An approach to the approximate solution of these equations is discussed. The found 

distribution function is used to calculate the fluxes of the number of gas particles and their energy in the 

first order in gradients T and 0µ . Kinetic coefficients, which describe the structure of these fluxes, are 

introduced. Matrix elements of the operator of the linearized collision integral (integral brackets) are used 

for their research. It is a question of validity of the principle of symmetry of kinetic coefficients and 

definition of their signs. 
Keywords: Boltzmann kinetic equation, hydrodynamic equation, strong external potential field, functional 

hypothesis, parameters of reduced description, steady states, kinetic coefficients. 
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1. Introduction 

The study of hydrodynamic processes in various systems is a modern direction in the 

theory of nonequilibrium processes [1]. Particular attention is paid to the study of 

hydrodynamic states of systems whose equilibrium state is spatially inhomogeneous. Such 

systems include both systems in the external field, which causes inhomogeneity, and systems 

with a broken symmetry. The most important examples are the hydrodynamics of a normal 

fluid in a gravitational field [2], the hydrodynamics of a plasma in an electric field [3], the 

hydrodynamics of a superfluid Bose fluid (see, for example, [4]), and the hydrodynamics of 

crystalline bodies (see, in particular, [5]). The developed approaches are reduced to the search 

for quantities that are close to the values of standard hydrodynamics, but for spatially 

inhomogeneous considered system do not depend on the coordinates. In the hydrodynamic 

state of a spatially inhomogeneous system, it is assumed that these quantities are weakly 

dependent on the coordinates, i.e., their gradients are small. 

The basis of fluid hydrodynamics to some extent is its thermodynamics [6]. It should be 

noted that there are fundamental issues related to the justification of the thermodynamics of 

systems in the external potential field ( )U x . The basic statement [3] on the independence of 

coordinates for an arbitrary one-component fluid of quantity ( ( ), ) ( )n x T U xµ + , where ( , )n Tµ  

is the chemical potential of the fluid  as a function of the density of  its particle  number ( )n x  
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and temperature T , requires further study. 

In this work, the hydrodynamic states of a one-component gas in the presence of an 

external potential field ( )U x are investigated. The consideration is based on the 

Boltzmann kinetic equation, which has usual form 

f ( , ) f ( , ) f ( , )( )
(f ( , ))

p p p p

p

l l l l

x t x t x tU x
I x t

t p x x p

ε∂ ∂ ∂ ∂∂
= − + +

∂ ∂ ∂ ∂ ∂
 (1) 

(
2

/ 2p p mε = ). In this case, the force acting on each particle /
l l

F U x= −∂ ∂  is not 

considered small, i.e. the field U  is not considered weak. At the same time, the influence 

of the field on the pair collisions of the gas particles is neglected. The collision integral of 

the kinetic equation can be written in the form 

3 3 3 3
1 2 3 4 1 2 3 4(f ) ( , )pI d p d p d p d p p p p p≡ Φ ×∫  

1 2 3 4{ ( ) ( ) ( ) ( )}p p p p p p p pδ δ δ δ× − + − − − − − ×  

1 2 3 4 1 2 3 4 3 4 1 2( ) ( ){f f f f }p p p pδ δ ε ε ε ε× + − − + − − − , 

(2) 

which emphasizes the conservation in collisions of the number of particles, their 

momentum and energy (to simplify recording 
ii pε ε≡ , f f

ii p= ) and allows to easily 

check the relations 

3 (f)=0pd pI∫ ,       3 (f ) =0p ld pI p∫ ,      3 (f ) =0p pd pI ε∫ . (3) 

The densities of the number of particles ( )n x , momentum ( )l xπ  and energy ( )xε  

are determined by conventional formulas 

( , ) f ( , )p pn x t d x tτ= ∫ ,    ( , ) f ( , )l p p lx t d x t pπ τ= ∫ ,    ( , ) f ( , )p p px t d x tε τ ε= ∫  (4) 

 (for reasons of dimensionality, the element of integration is chosen in the form 
3 3/pd d p hτ ≡ where h  is Planck's constant). The basis of the equations of 

hydrodynamics is the laws of conservation in differential form, which follow from the 

kinetic equation and in the presence of an external field have the form 

l

l

in

t x

∂∂
= −

∂ ∂
,       n nl

l n

t U
n

t x x

π∂ ∂ ∂
= − −

∂ ∂ ∂
,      l l

l l

q U

t x m x

πε ∂∂ ∂
= − −

∂ ∂ ∂
. (5) 

where the flux densities of the number of particles li , momentum nlt  and energy lq   

( , ) ( , ) /l li x t x t mπ= ,          ( , ) f ( , )
p

nl p p n

l

t x t d x t p
p

ε
τ

∂
=

∂∫ ,          

( , ) f ( , )
p

l p p p

l

q x t d x t
p

ε
τ ε

∂
=

∂∫  

(6) 

are introduced. The problem of constructing the equations of standard hydrodynamics is 

to find expressions for the densities of momentum nlt  and energy lq  fluxes as functions 

of densities n , lπ , ε . 
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Note that a similar problem was considered by Lorentz and with the time by Landau 

for plasma in the Lorentz model [3]. Their work was based on the kinetic equation in the 

approximation of the relaxation time, taking into account the external electric field and to 

some extent the effects of long-range. Our paper is devoted to the study of a gas primarily 

in an external gravitational field, the interaction between the particles of which is short-

range one and the dynamics of which is described by the Boltzmann kinetic equation. 

The work is structured as follows. Section 2 formulates an approach to the 

construction of gas hydrodynamics in the presence of a strong potential external field. 

Section 3 derives general formulas for gas kinetic coefficients and discusses their 

properties. 

2. Construction of gas hydrodynamics in the presence of an external field 

The equilibrium gas distribution function in the presence of an external potential 

field ( )U x has the form 

3f ( ) ( )eq eq
p p mx h n x w υ−= ,         

( )

0( )

U x

eq Tn x n e
−

= ,        
3/2

1

(2 )

p

T
pw e

mT

ε

π

−

= ; 

f ( ) ( )eq eq

p p
d x n xτ =∫ , 

(7) 

where ( )eq
n x is the Boltzmann distribution for the density of the number of particles, pw  

is the Maxwell distribution, lυ  is gas velocity, 0n  is gas density at the point where the 

field is zero. This function satisfies kinetic equation (1) with quantities 0n , T , lυ  

independent on coordinates and time. 

The equilibrium distribution function f ( )
eq

p x  at rest of the gas can be written as the 

Maxwell–Boltzmann distribution 

0 [ ( )]

f ( )
p U x

eq T
p x e

µ ε− +

= .
   

0 0( , )n Tµ µ≡ ,    
3

3/2
( , ) ln

(2 )

nh
n T T

mT
µ

π
= , 

(8) 

where the chemical potential of the classical ideal gas is introduced. The value 

0( ( ), ) ( )n x T U xµ µ+ =  (9) 

and does not depend on coordinates. 

In this paper, we limit ourselves to the study of steady-state gas states, which are the 

most important from the point of view of the experiment. In the steady state of the 

system, the parameters that describe its state do not depend on time, but it has fluxes of 

particles, momentum and energy. Consider hydrodynamic states, which are described by 

the parameters 0 ( )xµ , ( )T x  and assuming that the gas is at rest. The gradients of these 

parameters are considered to be small, because in equilibrium they do not depend on the 

coordinates. As usual the next estimates 

1

0 ( )

..
s

s
s

l l

x
g

x x

µ∂

∂ ∂
∼ ,  

1

( )

..
s

s
s

l l

T x
g

x x

∂

∂ ∂
∼  (10) 
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are used. Small parameter of the theory g  is introduced on the basis of estimates of the 

type  

1

( )

..
s

s

s
l l

T x T

x x L

∂

∂ ∂
∼ ,

     

l
g

L
≡  (11) 

where l  is the free path length, L  is the characteristic size of inhomogeneities in the 

system, T  is the characteristic temperature value. 

The consideration of the paper is based on the Chapman–Enskog method [6] in 

Bogolyubov's formulation (see [7]), the basis of which is his idea of the functional 

hypothesis 

0
0f ( , ) f ( , ( ), ( ))p pt

x t x t T t
τ

µ
>>

→  (12) 

( 0τ is characteristic time of the order of free path time). Nonequilibrium distribution 

function 0f ( , , )p x Tµ  is sought from the kinetic equation in the form of an expansion in 

the gradients of parameters 0 ( )xµ  and ( )T x  

(0) (1) 2
0f ( , , ) f ( ) f ( ) ( )p p px T x x O gµ = + +  (13) 

In zero order approximation, the distribution function is given by the local Maxwell– 

Boltzmann distribution 

 
(0)f ( ) ( )p px xω=

 
,         

0 ( ) [ ( )]

( )( )

px U x

T x
p x e

µ ε

ω

− +

≡
 

(14) 

because 

(0)

0
p p p

l l l l

U

p x x p

ε ω ω∂ ∂ ∂ ∂
− + = 

∂ ∂ ∂ ∂ 
,        ( ) 0pI ω = . (15) 

When analyzing the first in the gradient approximation, it is taken into account that 

(0) (0)
00

2

f f [ ]1p p p pl
p

l l l l l l

UpU T

p x x p m T x xT

ε µ εµ
ω

∂ ∂ ∂ − + ∂∂ ∂
− + = − − 

∂ ∂ ∂ ∂ ∂ ∂ 
 (16) 

and  

( 0)

(0) (0) 3 2
'

'

(f )
(f ) (f f ) (f ) f ( f )

f

p

p p p p

p f f

I
I I I d p O

δ
δ δ δ

δ
=

′= + = + + ≡∫
 

      

3 2f ( f )pp pd p M Oδ δ′ ′′≡ +∫ . 

(17) 

The integral equation for the first-order contribution to the distribution function has 

the form 

0 3 (1)0
2

( )1
0 f

pl
p pp p

l l

U xp T
d p M

m T x xT

µ εµ
ω ′ ′

− − ∂ ∂
′= − − + 

∂ ∂ 
∫  (18) 

Its solution for reasons of rotational invariance has the structure 
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(1)f p p phω= , 0
p p l p l

l l

T
h A p B p

x x

µ∂ ∂
≡ +

∂ ∂
, (19) 

where pA , pB  are some scalar functions which are solutions of  the integral equations 

3 1
pp p l ld p K A p p

mT
′ ′′ ′ =∫ ,           

03

2

p

pp p l ld p K B p p
mT

ε µ
′ ′

−
′ ′ =∫ . (20) 

The kernel of these integral equations is determined by the collision integral with 

formulas 

,p pp pp pK Mω ω′ ′ ′= −  

3 3 3 3
1 2 3 4 1 2 3 4( , )ppM d p d p d p d p p p p p′ = Φ ×∫  

1 2 3 4{ ( ) ( ) ( ) ( )}p p p p p p p pδ δ δ δ× − + − − − − − ×
 

1 2 3 4 1 2 3 4( ) ( )p p p pδ δ ε ε ε ε× + − − + − − ×  

3 4 4 3 1 2 2 1{ ( ) ( ) ( ) ( ) }p p p p p p p pδ ω δ ω δ ω δ ω′ ′ ′ ′× − + − − − − − , 

3 3 3 3
1 2 3 4 1 2 3 4( , )pp pK d p d p d p d p p p p pω′ = Φ ×∫  

1 2 2 1 3 4 4 3{ ( ) ( ) ( ) ( ) }p p p p p p p pδ ω δ ω δ ω δ ω× − + − − − − − ×  

1 2 3 4 1 2 3 4( ) ( )p p p pδ δ ε ε ε ε× + − − + − − ×  

1 2 3 4{ ( ) ( ) ( ) ( )}p p p p p p p pδ δ δ δ′ ′ ′ ′× − + − − − − −  

(21) 

(
ii pω ω≡ ). Integral equations (20) do not contain any small parameter that can be used to 

approximately solve them. An approximate solution can be found by the method of 

truncated expansion in the Sonine polynomials (a special case of the Galerkin method) 

(see [3]). 

3. Kinetic coefficients of the gas in the presence of external field  

The found distribution function (19) allows calculating by formulas (4), (6) the 

fluxes of the number and energy of particles 

(1) (1)f
p

l p p

l

i d
p

ε
τ

∂
=

∂∫ ,        (1) (1)f
p

l p p p

l

q d
p

ε
τ ε

∂
=

∂∫ . (22) 

With the considerations of rotational invariance, this gives 

(1) 0
l

l l

T
i a b

x x

µ∂ ∂
= − −

∂ ∂
, 

(1) 0
l

l l

T
q c d

x x

µ∂ ∂
= − −

∂ ∂
 (23) 

where kinetic coefficients 

2

3
p pa Aε≡ 〈 〉 ,  

2

3
p pb Bε≡ 〈 〉 ,    

22

3
p pc Aε≡ 〈 〉 22

3
p pd Bε≡ 〈 〉 . (24) 

are introduced. 
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One can analyze the properties of the kinetic coefficients, expressing them through 

the bilinear form { , }p pa b  

3 3{ , }p p p p pp pa b d pd p a K bω ′ ′′≡ =∫ , 

1 2

3 3 3 3
1 2 3 4 1 2 3 4( , ) p pd p d p d p d p p p p p ω ω= Φ ×∫  

1 2 3 41 2 3 4( ) ( )p p p pp p p pδ δ ε ε ε ε× + − − + − − ×
 

1 2 3 4 1 2 3 4
{ }{ }p p p p p p p pa a a a b b b b× + − − + − − . 

(25) 

The bilinear form{ , }p pa b , which is also called the integral bracket [6], has useful 

properties for arbitrary functions pa , pb . 

{ , } { , }p p p pa b b a= ,     { , } 0p pa a ≥ , 

2{ , }{ , } { , }p p p p p pa a b b a b≥ . 
(26) 

Integral equations (20) for functions pA , pB , and definitions of kinetic coefficients (24) 

give identities 

{ } 3
( , ) ,p l p lA A A p A p a

T
≡ = ,    { } ( )02

3
( , ) ,p l p lB B B p B p d b

T
µ≡ = −  

{ } 3
( , ) ,p l p lB A B p A p b

T
≡ = ,    { } ( )02

3
( , ) ,p l p lA B A p B p c a

T
µ≡ = − , 

(27) 

As a result, the formulas for fluxes (23) and the corresponding kinetic coefficients take 

the form 

(1) 0
l

l l

T
i a b

x x

µ∂ ∂
= − −

∂ ∂
,      (1) (1) 0

0l l

l l

T
q i Tb k

x x

µ
µ

∂ ∂
= − −

∂ ∂
, 

( ), 0
3

T
a A A= > ,         ( ),

3

T
b A B= ,      ( )

2

, 0
3

T
k B B≡ > . 

(28) 

The energy flux includes the same kinetic coefficient b  as the particle flux. This is a 

manifestation of the Onsager principle of symmetry of kinetic coefficients. The first term 

in the energy flux should be considered as convective transfer, i.e. energy transfer 

together with particle transfer. The thermal conductivity κ  should be defined by the 

formula 

(1) (1)
0l l

l

bT T
q i

a x
µ κ

∂ 
= + − 

∂ 
 (29) 

that is, by the transfer of energy in the absence of the flux of particles that gives 

( )( ) ( )
( )

22 , , ,
0

3 ,

A A B B A BT

A A
κ

−
= > . (30) 
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Thus, the expressions for all kinetic coefficients of the system are obtained and their 

general properties are clarified. Approximate solutions of integral equation (20) for pA , 

pB  and calculation of the kinetic coefficients will be given in a subsequent paper. 

4. Conclusions 

The hydrodynamics of steady states of rarefied gas in the presence of a strong 

potential external field ( )U x under the condition of absence of macroscopic motion in the 

system is developed in the work. In the gas, the force /l lF U x= −∂ ∂  acts on its particle 

that is not considered small, but its effect on the collision of particles is neglected. 

Generalization for the case of non-steady states of a moving gas will be carried out in a 

subsequent paper. This can be done quite simply, because, despite the finite magnitude of 

the force, the contributions of zero order in gradients in the general equations of 

hydrodynamics (5) are absent. This can be seen from formula (16) when replacing the 

distribution function pω  in it by the function p mυω − , where lυ  is the macroscopic 

velocity of the gas.  

The present paper is based on the Chapman–Enskog method in Bogolyubov's 

formulation, which is based on his idea of the functional hypothesis. As part of the 

construction of hydrodynamics based on the Boltzmann kinetic equation, the system is 

considered largely as an ideal gas. In particular, this can be seen from the definitions of 

energy density (4) and flux densities of energy and momentum (6). This is also seen from 

expression (7) for the equilibrium distribution function f ( )
eq
p x , which is exact solution of 

the kinetic equation and contains the Boltzmann distribution for the particle density in the 

presence of a potential field. Expression (8) for f ( )
eq
p x  allows to define as hydrodynamic 

states of the gas such ones in which chemical potential 0µ  and temperatureT  weakly 

depend on coordinates and therefore are parameters of the reduced description ( 0µ  is 

chemical potential of the gas at a point where the field potential ( )U x  is equal to zero). 

It is further proved that the localized equilibrium distribution function ( )p xω with 

(14) is a contribution to the nonequilibrium distribution function 0f ( , , )p x Tµ  of zero 

order in gradients of the parameters of the reduced description 0 ( )xµ  and ( )T x . This 

means that the gas in the presence of a potential external field can be in a local 

equilibrium and is allowed to calculate the contribution 
(1)

0f ( , , )p x Tµ  of the first order in 

gradients of 0µ  і T  to 0f ( , , )p x Tµ . This contribution is determined by two scalar 

functions pA  and pB , which are solutions of Fredholm integral equations of the first kind 

with the positively defined kernel. These equations do not contain any small parameter 

and cannot be solved in a perturbation theory. Their approximate solution will be 

investigated in a subsequent paper on the basis of the method of truncated expansion in 

orthogonal Sonine polynomials (a special case of the Galerkin method) (see, for example, 

[3]). 

Finally kinetic coefficients of the gas are calculated in terms of functions pA  and 

pB , written through the matrix elements of the operator ppK ′  of linearized collision 

integral (integral brackets). This allowed us to note the implementation of the Onsager 

principle of symmetry of kinetic coefficients and determine their signs. 
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