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The calculation of the non-reflective connection in the coaxial line is performed by the integral 

equation method. The connection of coaxial lines with a significant difference in geometric dimensions is 

considered. A system of equations is obtained that allows calculating the reflection coefficient of the T-wave 

from such an inhomogeneity. This technique makes it possible to calculate a multistage coaxial waveguide 

in order to minimize the reflection coefficient from inhomogeneities. 
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1. Introduction 

Discontinuous changes in the cross section of the coaxial line are considered in [1, 2]. 

The transitions between the coaxial line and the waveguide are also considered [3, 4]. A 

change in the transverse dimensions of the lines to be connected is accompanied by a change 

in the structure of the electromagnetic field and the wave impedance of such lines. If the 

transverse dimensions of the lines to be connected differ by more than five times, then it is 

necessary to build a multistage transition. An example of the construction of such a transition 

can be as shown in Fig. 1. In addition to the multistage transition, a cone-shaped transition 

can be used (Fig. 2) [2]. A cone-shaped transition has constant characteristic impedance along 

its entire length only if both cones have a common vertex. In a cone-shaped transition, the 

field is distorted at the junction of the cylindrical segments with the conical segments. The 

disadvantages of a tapered transition include a long transition length. 

When calculating a multi-step transition, it is impossible to apply the standard 

equivalent diagrams that are used to calculate transitions with a slight difference in the 

transverse dimensions of the connected lines. Here the method of computer electrodynamics 

[3] or the exact classical electrodynamics calculation [5] can be applied. 

 
 

Fig.1. Multistage coaxial transition Fig. 2. Cone-shaped transition 

2. Formulation of the problem 

In fig. 3 shows a cross-section of a single stepped junction in a coaxial waveguide. Let 

us conditionally divide the region of determining the field in the coaxial waveguide into three 

regions. Region А: ,0 lz  0r ˂  ˂ 3r . Region В: z ˂0, 0r ˂  ˂ .3r  
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Region С: zl  ˂  , 0r ˂  ˂ 2r  (fig. 3). 

In region B, the main T-wave is excited at a point z . The walls of a stepped 

coaxial transition are assumed to be ideally conducting, and the medium in the line is 

homogeneous and isotropic. We assume that in region C the line is loaded with a matched 

load. 

Let us write the equation for the field components for each area. In region А: 
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In region C: 
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Fig.3. Single stepped junction in a coaxial waveguide 
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All quantities that enter into the equation for region A are determined from the 

following relations:  
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Here Am  is determined from the equation:  

.0)()()()( 00303000  rNrJrNrJ AmAmAmAm    

3. Non-reflective connection calculation 

Let us write down the equations for the regions A and B at the point z = 0; for 

regions A and C at the point z = l. The conditions for "stitching" the fields at the 

boundaries of the division of the regions are as follows: in point z=0   

1, rEE rArB  ˂ r ˂ 3r ; 0,0 rErA  ˂ r ˂ 1r ; 1, rHH AB   ˂ r ˂ 3r ; in point z=l   

1, rEE rArB  ˂ r ˂ 3r ; 2,0 rErA  ˂ r ˂ 3r ; 1, rHH AB   ˂ r ˂ 3r . 

Using the conditions for "matching" electromagnetic fields, we obtain six equations.  
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We will integrate over r in the range from 1r  to 3r  in area B and from 0r  to 3r  in 

area A. From equations (1) and (2) we obtain 
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from equation (3) we obtain 
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from equation (6) we obtain 

0
)(

)(lnln)(
1 20

10

2'
0

0

2''
0

'
0  





























Am

Am

m

l
m

l
mAm

jkljkljkl rZ
eAeAY

r

r
eC

r

r
eAeA AmAm









 

(10) 

We use the property of orthogonality of eigenfunctions. We multiply expressions (1) 

and (2) by )(1 rZr Am , then add the left and right sides of the obtained equalities, and 

then integrate from 1r  to 3r  in the section 0z . In the section 0z , integration 

can be extended from 0r  to 3r , then we get  
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We perform similar actions for expressions (4) and (5). We multiply both sides of 

expression (3) by )(1 rZr Bn  and integrate from 1r  to 3r . We multiply both sides of 

expression (6) by )(1 rZr Cn  and integrate from 0r  to 2r . Next, we use the known 

transformations from [6]: 
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Then from the last expression we get that 
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Using the transformations discussed above, the following expressions can be 

obtained: 
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Expressions (7) - (10) and (12) - (15) represent an infinite homogeneous system of 

algebraic equations. For a system to have a nonzero solution, the determinant of this 

system must be equal to zero. When calculating, it is necessary to restrict oneself to a 

finite number of higher types of wave’s m. The number m is chosen based on the required 

calculation accuracy. The reflection coefficient from inhomogeneity the T-wave 

inhomogeneity is determined by the relation 
'
0

''
0 / BBГ  . 

4. Conclusions 

The paper proposes an accurate electrodynamics calculation of a non-reflective 

connection of coaxial waveguides. The proposed technique makes it possible to calculate 

a multistage coaxial transition for the case of a significant difference in the transverse 

dimensions of the connected coaxial waveguides. Taking into account the fact that the 

inhomogeneities caused by the change in the cross-section of the line are not interacting, 

you can choose the minimum value of the geometric dimension l. This makes it possible 

to significantly reduce the longitudinal length of the multistage transition in comparison 

with the tapered transition and to reduce the mass and size characteristics of the 

transition.  
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