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The calculation of the non-reflective connection in the coaxial line is performed by the integral
equation method. The connection of coaxial lines with a significant difference in geometric dimensions is
considered. A system of equations is obtained that allows calculating the reflection coefficient of the T-wave
from such an inhomogeneity. This technique makes it possible to calculate a multistage coaxial waveguide
in order to minimize the reflection coefficient from inhomogeneities.
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1. Introduction

Discontinuous changes in the cross section of the coaxial line are considered in [1, 2].
The transitions between the coaxial line and the waveguide are also considered [3, 4]. A
change in the transverse dimensions of the lines to be connected is accompanied by a change
in the structure of the electromagnetic field and the wave impedance of such lines. If the
transverse dimensions of the lines to be connected differ by more than five times, then it is
necessary to build a multistage transition. An example of the construction of such a transition
can be as shown in Fig. 1. In addition to the multistage transition, a cone-shaped transition
can be used (Fig. 2) [2]. A cone-shaped transition has constant characteristic impedance along
its entire length only if both cones have a common vertex. In a cone-shaped transition, the
field is distorted at the junction of the cylindrical segments with the conical segments. The
disadvantages of a tapered transition include a long transition length.

When calculating a multi-step transition, it is impossible to apply the standard
equivalent diagrams that are used to calculate transitions with a slight difference in the
transverse dimensions of the connected lines. Here the method of computer electrodynamics
[3] or the exact classical electrodynamics calculation [5] can be applied.
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Fig.1. Multistage coaxial transition Fig. 2. Cone-shaped transition

2. Formulation of the problem

In fig. 3 shows a cross-section of a single stepped junction in a coaxial waveguide. Let
us conditionally divide the region of determining the field in the coaxial waveguide into three

regions. Region A: 0<z<I, rg<p<rz.RegionB: 00<7<0, H<p<rs.
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Region C: | <2<+, Ipm<p<r, (fig. 3).

In region B, the main T-wave is excited at a point z=—o0. The walls of a stepped
coaxial transition are assumed to be ideally conducting, and the medium in the line is

homogeneous and isotropic. We assume that in region C the line is loaded with a matched
load.

Let us write the equation for the field components for each area. In region A:
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Fig.3. Single stepped junction in a coaxial waveguide
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All quantities that enter into the equation for region A are determined from the
following relations:

Zn(xam N =In(xam N +Gam(xam 1);
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Here yam is determined from the equation:
Jo(zam fo) No(xam r3) — Jo(xam 13) No(xam o) =0.

3. Non-reflective connection calculation

Let us write down the equations for the regions A and B at the point z = 0; for
regions A and C at the point z = I. The conditions for "stitching" the fields at the
boundaries of the division of the regions are as follows: in point z=0

Eg =Ea, n<r<ry; Exa=0, rp<r<n; Hpg=Hg, n<r<rz;in pointz=I
Eg =Era, N<r<rz; E,oa=0, n<r<rs; Hogg =Hgpa, n<r<rs.

Using the conditions for "matching™ electromagnetic fields, we obtain six equations.
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We will integrate over rin the range from r; to r3 inarea B and from ry to r3 in
area A. From equations (1) and (2) we obtain

(A5+A5)In[r—3]—(85+ BS)In[5]=o; (7)
o g
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from equation (3) we obtain
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1(A6e'jk'—Aaejk')ln[rzj—%e'jk'In[r ] ZY+ (Ame 7l _|_Ame7Am )M_O
1 fo ) m=1 ZAm (10)

We use the property of orthogonality of eigenfunctions. We multiply expressions (1)
and (2) by rZy(xam ), then add the left and right sides of the obtained equalities, and

then integrate from r; to r3 in the section z=-0. In the section z=+0, integration
can be extended from 1y to ry, then we get
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We perform similar actions for expressions (4) and (5). We multiply both sides of
expression (3) by rZ;(xgn r) and integrate from 1, to r3. We multiply both sides of

expression (6) by rZi(ycn ) and integrate from ry to rp. Next, we use the known
transformations from [6]:
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Then from the last expression we get that
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Using the transformations discussed above, the following expressions can be
obtained:
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here
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Expressions (7) - (10) and (12) - (15) represent an infinite homogeneous system of
algebraic equations. For a system to have a nonzero solution, the determinant of this
system must be equal to zero. When calculating, it is necessary to restrict oneself to a
finite number of higher types of wave’s m. The number m is chosen based on the required
calculation accuracy. The reflection coefficient from inhomogeneity the T-wave

inhomogeneity is determined by the relation /" = Ba / Bb.

4. Conclusions

The paper proposes an accurate electrodynamics calculation of a non-reflective
connection of coaxial waveguides. The proposed technique makes it possible to calculate
a multistage coaxial transition for the case of a significant difference in the transverse
dimensions of the connected coaxial waveguides. Taking into account the fact that the
inhomogeneities caused by the change in the cross-section of the line are not interacting,
you can choose the minimum value of the geometric dimension I. This makes it possible
to significantly reduce the longitudinal length of the multistage transition in comparison
with the tapered transition and to reduce the mass and size characteristics of the
transition.
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