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Weconsider a decoupling scenariowithin the twoHiggsdoubletmodel (2HDM)with small CPviolation.

Mass eigenstates of this model include one neutral scalar field with themass of the Standardmodel (SM)Higgs
boson and four other scalars, which decouple at low energies. We derive the effective operators of interac
tions between the SM fermions and the lightest scalar particle of the model. The coefficients at these operators
are expressed in terms of the twoHiggsdoublet model parameters. The scattering processes affected by this
effective Lagrangian are identified.
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1. Introduction
Nowadays, the Standard model is the best experimentally proven theoretical description

of interactions between elementary particles. However, there are physical phenomenons which
could not be explained within the SM, such as baryon asymmetry in the Universe, neutrino
masses, dark matter, etc. To address these problems, many different models were proposed,
which extend the SM with different new particles. Observable predictions of these models had
been tested in experiments, but no new states beyond the SM were found so far. This could
happen because of different reasons. In our paper, we consider the case when masses of new
particles are much bigger than the collision energies used in the experiments. Hence, their
contributions to the scattering amplitudes could be small because of decoupling, and the non
resonant search methods become relevant [1].

It is convenient then to describe the interactions of new particles with the lowenergy ef
fective Lagrangian (EL) of the SM fields, which consists of highdimensional operators. Then
contributions of these operators could be constrained by experiment. The lowenergy effec
tive Lagrangians of the new physics models are also different – some types of operators are
suppressed or enhanced in a particular model. Thus, it is necessary to obtain the experimental
constraints for the effective Lagrangian of each model, to improve the experimental reach [2].
In our paper, we derive the lowenergy effective Lagrangian of the twoHiggsdoublet model
(2HDM). A detailed review of this model could be found in [4, 6–9].

Here we consider the 2HDM as one of the extensions of the SM, which introduces a wide
variety of new phenomena. For instance, one of Sakharov’s baryogenesis conditions could be
fulfilled within the SM extended with one scalar doublet [5]. As it is known, the minimal SM
does not have this feature [13].

The 2HDM predicts that there exist five ”physical” scalar particles, while only one has
been experimentally observed as the Higgs boson. We investigate the case when the SM Higgs
boson is the lightest state of the 2HDM, and the other four scalar particles are heavy. We in
tegrate over these heavy scalar bosons and obtain a lowenergy EL of the 2HDM. We find the
analytical expressions for the corrections coming from interactions with heavy scalars to the
Yukawa couplings of the SM and parameters of the treelevel potential of the SM Higgs boson.
Then we derive new effective operators of the dimensions 5 and 6. They are introduced by in
teractions with the heavy 2HDM bosons, and find the analytical expressions for the couplings
of these operators. All the corrections we provide up to the order of Λ−2, where Λ is a mass
scale of the heavy bosons. We point out decoupling phenomenon in the considered model.
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The scenario where some or all of the scalar bosons become heavy was considered in
[3,7,11]. CPconserving potential of the 2HDMwhich is symmetric under the change of sign of
one of the doublets was discussed in these papers. Expressions for the couplings of ”physical”
scalars to other fields were obtained in [7]. In that research, a scenario where couplings between
the nonminimal scalars and the SM particles are small for some values of the model parameters
was discussed. Lowenergy effective Lagrangian of the 2HDM was obtained in [11] for the
case when all physical 2HDM particles are beyond the reach of the modern colliders. However,
the discovery of the 125GeV Higgs boson makes this hypothesis questionable, so we do not
proceed with it. Authors of [3] have obtained the lowenergy EL for the 2HDMwhere one of the
scalars is light and the others are heavy. As it was shown there, such variant of the 2HDM does
not fit good enough to the LHC Higgs data, and some modifications of the model are required.
In our paper, we choose the more general potential, discussed in [6, 8], which also allows for a
small violation of the CPsymmetry, and obtain the lowenergy EL for such a model.

This paper is organized as follows. In section 2 we discuss the particle spectrum of the
model and analyze properties of the particles. Section 3 contains the lowenergy effective La
grangian of the 2HDM. In that section we figure out corrections to the parameters of the SM and
couplings of the effective operators introduced by the 2HDM. Section 4 summarises our results.
We provide analytical expressions for the mass matrices of the scalar particles and for the terms
of Yukawa interaction between the 2HDM scalars and the SM fermions in the Appendix.

2. TwoHiggsdoublet model potential
We start with the Lagrangian of the 2HDM scalar fields Ls:

Ls =
∑
i=1,2

(Dµϕi)
†Dµϕi − V (ϕ1;ϕ2), iDµ = i∂µ +

1

2
gσaW

a
µ +

1

2
g′Bµ, a = 1; 3. (1)

Here ϕ1 and ϕ2 denote two scalar doublets. V (ϕ1;ϕ2) is a potential of the scalar fields. There is
also a Lagrangian LY of Yukawa interaction between the scalar doublets and the SM fermions,
which we discuss in the next section. In our investigation, we consider only effective vertexes
with the SM Higgs h and/or fermions in the initial and final states. Contributions of the weak
gauge bosons to these vertexes are of the nexttoleading order, so we neglect them and omit
gauge fields in the kinetic term in (1).

There are many possible types of interactions between particles which could be introduced
by a general potential of the twoHiggsdoublet model. In our paper, we choose the specific
potential:

V (ϕ1;ϕ2) = m2
11ϕ

†
1ϕ1 +m2

22ϕ
†
2ϕ2 − (m2

12ϕ
†
1ϕ2 +m2∗

12ϕ
†
2ϕ1)+

+
1

2
λ1(ϕ

†
1ϕ1)

2 +
1

2
λ2(ϕ

†
2ϕ2)

2 + λ3(ϕ
†
1ϕ1)(ϕ

†
2ϕ2) + λ4(ϕ

†
1ϕ2)(ϕ

†
2ϕ1)+

+
1

2

[
λ5(ϕ

†
1ϕ2)

2 + λ∗
5(ϕ

†
2ϕ1)

2
]
, (2)

ϕi =

(
a+i
ϕ0
i

)
, ϕ0

i =
1√
2
(vi + bi + ici) . (3)

Here a+i , bi and ci are charged, neutral CPeven and neutral CPodd components of the dou
blet ϕi, respectively. Neutral components of the doublets have real vacuum expectation values
(VEVs) 1√

2
v1 and 1√

2
v2, v1 > v2. All parameters in the potential (2) are real, except m2

12 and
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λ5. Because of this, there are neutral scalars with unspecified CPparity among the mass eigen
states of the model. Yukawa interaction of these states with fermions violates CPparity [6], and
the magnitude of CPviolation is regulated by Imλ5.

Vacuum state of the model minimizes the potential (2):

∂V

∂ϕ1

∣∣∣
vac

= 0,
∂V

∂ϕ2

∣∣∣
vac

= 0.

From these equalities we find relations between some of the model parameters:

m2
11 =

v2
v1

Rem2
12 −

1

2

[
λ1v

2
1 + v22 (λ3 + λ4 + Reλ5)

]
,

m2
22 =

v1
v2

Rem2
12 −

1

2

[
λ2v

2
2 + v21 (λ3 + λ4 + Reλ5)

]
,

Imm2
12 =

1

2
v1v2Imλ5.

We investigate the scenario when one of the mass eigenstates has the samemass as the SMHiggs
boson, and four another are very heavy, so they decouple at energies of order O(v), where v is
the SM Higgs VEV. This scenario could be realized if we put Rem2

12 to be very big [3,7,9]. In
our research we consider Rem2

12, v1, v2 and scalar selfcouplings λi, i = 1; 5 as free parameters
of the model. For simplicity we also assume that Imλ5 is small.

The mass matrices of the scalar fields are given by coefficients in the quadratic terms of
the Taylor series expansion of (2) near its minimum,

V (ϕ1;ϕ2) = V (ϕ1;ϕ2)
∣∣∣
vac

+

(
a+1
a+2

)T

M2
a

(
a−1
a−2

)
+

1

2


b1
b2
c1
c2


T

M2
bc


b1
b2
c1
c2

+O(ϕ3).

In this equation, M2
a and M2

bc are the mass matrices of the particles a+i , bi and ci, respectively
[6, 8]. The expressions for them are given in the Appendix. Eigenstates of the matrix M2

a are
the charged Goldstone boson G+ and the massive particleH+:

H+ = −a+1 sinβ + a+2 cosβ, G+ = a+1 cosβ + a+2 sinβ,

tanβ =
v2
v1

. (4)

One of the eigenvalues of M2
bc is zero, so that there are three massive scalars h1, h2, h3

and one Goldstone boson G0:
h1
h2
h3
G0

 = R


b1
b2
c1
c2

 , R =

(
1 0
0 Rβ

)
, Rβ =

(
−sβ cβ
cβ sβ

)
,

sβ = sinβ, cβ = cosβ, tβ = tanβ.
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The mass matrix of the massive neutral scalars h1, h2 and h3 is

M2
h =

 λ1v
2c2β + tβRem2

12 v2sβcβλ345 − Rem2
12 −1

2 Imλ5v
2sβ

v2sβcβλ345 − Rem2
12 λ2v

2s2β + 1
tβ
Rem2

12 −1
2 Imλ5v

2cβ

−1
2 Imλ5v

2sβ −1
2 Imλ5v

2cβ
1

sβcβ
Rem2

12 − Reλ5v
2

 ,

v2 = v21 + v22, λ345 = λ3 + λ4 + Reλ5.

We diagonalize this matrix via 3 the rotations of the basis {h1;h2;h3} [6]. The rotation matrixes
are

R1 =

 cα1 sα1 0
−sα1 cα1 0
0 0 1

 , R2 =

 cα2 0 sα2

0 1 0
−sα2 0 cα2

 , R3 =

1 0 0
0 cα3 sα3

0 −sα3 cα3

 ,

α = α1 −
π

2
. (5)

Here we follow the notation of [6] and use the angle α instead of α1. Nondiagonal element
M2

h12 ofM
2
h vanishes after the rotation R1:

M2′
h = R1M

2
hR

T
1 =

 S +∆ 0 −1
2 Imλ5v

2cα+β

0 S −∆ 1
2 Imλ5v

2sα+β

−1
2 Imλ5v

2cα+β
1
2 Imλ5v

2sα+β
1

sβcβ
Rem2

12 − Reλ5v
2

 ,

where S,∆ and α are defined as

S =
1

2

[
1

sβcβ
Rem2

12 + v2(λ1c
2
β + λ2s

2
β)

]
,

∆ =
1

2 cos 2α

[
2

t2β
Rem2

12 − v2(λ1c
2
β − λ2s

2
β)

]
, (6)

tan 2α = t2β
1− 1

2ελ345s2β

1− 1
2εt2β(λ1c2β − λ2s2β)

, ε =
v2

Rem2
12

. (7)

The angle α is such that cos 2α > 0 by definition. We diagonalize M2′
h with rotations R2 and

R3. Since |Imλ5| ≪ 1 and α2 ∼ Imλ5, α3 ∼ Imλ5, the corresponding rotation angles α2 and
α3 are small, too. So the following approximations for R2 and R3 are valid,

R2 ≈

 1 0 α2

0 1 0
−α2 0 1

 , R3 ≈

1 0 0
0 1 α3

0 −α3 1

 .

We neglect all the terms of the second and higher orders in Imλ5, and obtain the following
approximations for α2 and α3:

α2 ≈
Imλ5v

2 cos (α+ β)

2M2
h33 − 2(S +∆)

,

α3 ≈ − Imλ5v
2 sin (α+ β)

2M2
h33 − 2(S −∆)

. (8)
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Here M2
h33 denotes the third diagonal element of the mass matrix M2

h . Finally, we obtain the
neutral mass eigenstates H , h and A0H

h
A0

 = R3R2R1

h1
h2
h3

 =

 −b1sα + b2cα + α2 (c2 cosβ − c1 sinβ)
−b1cα − b2sα + α3 (c2 cosβ − c1 sinβ)

b1 (α3cα + α2sα) + b2 (−α2cα + α3sα) + c2 cosβ − c1 sinβ

 ,

G0 = c1 cosβ + c2 sinβ. (9)

As one can seen from these expressions, the neutral fields h, H and A0 do not have definite
CPparities, because they are the linear combinations of the CPeven fields b1, b2 and CPodd
fields c1 and c2. This mixing is proportional to Imλ5. So, when Imλ5 = 0, h and H become
CPeven, and A0 becomes CPodd. Simultaneously, CPparity of the Goldstone bosonG0 does
not depend on Imλ5, and this particle always remains CPodd.

The masses of the particles are given in the table 1.
Table 1

Masses of the 2HDM bosons

H± m2
H+ =

1

sβcβ
Rem2

12 −
1

2
v2(λ4 + Reλ5)

A0 m2
A =

1

sβcβ
Rem2

12 − Reλ5v
2

H m2
H = S +∆

h m2
h = S −∆

In the 2HDM, the masses of the weak gauge bosons are introduced by interaction with the
scalar doublets, and they are proportional to v. Hence, v is equal to the VEV of the Higgs field
in the minimal SM – v ≈ 250GeV . In the limit when Rem2

12 ≫ v2 and the all scalar self
couplings are∼ O(1), particlesH±,H andA0 become heavy and nearly degenerate in masses,
as it is shown in the table 2.

Table 2
Masses of the Higgs bosons in the limit Rem2

12 ≫ v2

H± m2
H+ ≈

1

sβcβ
Rem2

12

A0 m2
A ≈

1

sβcβ
Rem2

12

H m2
H ≈

1

sβcβ
Rem2

12

h m2
h ≈

1

2
λ1v

2c2β

(
1 +

1

cos 2β

)
+

1

2
λ2v

2s2β

(
1−

1

cos 2β

)

This limit also implies that tan 2α → tan 2β. Mass of the scalar boson h is then O(v), so
this quantity could be close to that of the SM Higgs boson.
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Hereafter we use the following parametrization for the scalar doublets:

ϕ1 = U

(
−H+sβ

1√
2
[v1 + (A0α3 − h)cα + (A0α2 −H)sα − i(A0 +Hα2 + hα3)sβ]

)
,

ϕ2 = U

(
H+cβ

1√
2
[v2 + (A0α3 − h)sα − (A0α2 −H)cα + i(A0 +Hα2 + hα3)cβ]

)
,

U = exp
[
−i

(Gσ)

v

]
, (Gσ) = σ1G1 + σ2G2 + σ3G3,

G± =
1√
2
(G2 ∓ iG1), G0 = G3. (10)

Here σa, a = 1; 3 denote Pauli’s matrices. The original parametrization (3) could be obtained
from (10) if one neglects the terms which are quadratic in fields [11]. In the unitary gauge (10),
the inessential Goldstone degrees of freedom do not enter the potential (2), and V (ϕ1;ϕ2) is
represented in terms of the ”physical” scalar fields, only.

3. Lowenergy effective Lagrangian of the 2HDM
We assume in our treatment that the SM Higgs is the lightest scalar boson of the Standard

model with two scalar doublets, and it is described with the h field. Then the highenergy
dynamics of the 2HDM and fermions is described by the following Lagrangian:

L = Ls + LY . (11)

The second term of (11), LY , is the Lagrangian of Yukawa interaction:

LY = −
∑
f ;f ′

∑
i=1,2

{
y
i(1)(q)
ff ′ (Q

(f)
L ϕi)d

(f ′)
R + y

i(2)(q)
ff ′ (Q

(f)
L ϕc

i )u
(f ′)
R +

+y
i(1)(l)
ff ′ (L

(f)
L ϕi)e

(f ′)
R + y

i(2)(l)
ff ′ (L

(f)
L ϕc

i )ν
(f ′)
R + h. c.

}
,

f ; f ′ = 1; 3, ϕc
i = −iσ2ϕ

∗
i , Q

(f)
L =

(
u
(f)
L

d
(f)
L

)
, L

(f)
L =

(
ν
(f)
L

e
(f)
L

)
. (12)

In this expression y
(1)(q)
ff ′ , y(2)(q)ff ′ , y(1)(l)ff ′ and y

(2)(l)
ff ′ are the Yukawa couplings. Superscripts (q)

and (l) denote couplings which describe interactions with quarks and leptons, respectively. ϕc
i is

the doublet which is chargeconjugated to ϕi,Q
(f)
L , and L(f)

L are the doublets of the lefthanded
quarks and leptons of the generation f , respectively. For instance, u(1)L is a lefthanded uquark,
d
(2)
R is a righthanded squark etc. Similarly, ν(1)L is a lefthanded electron neutrino, and e

(3)
L

is a lefthanded taulepton. Fermion doublets in (12) are parametrized in such a gauge that
Goldstone’s bosons do not enter LY . Besides, the all fermionic fields in (12) are the symmetry
eigenstates.

As it is known from the experimental data, there are no treelevel flavourchanging in
teractions between charged leptons or quarks of the same charge, in the considered range of
energies. This fact could be taken into account with the specific choice of the pattern or values
of the Yukawa couplings. However, the main results of our investigation do not depend on such
constraints. So we use the general expression for the Yukawa Lagrangian (12).
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In terms of the mass eigenstates of the 2HDM, the Yukawa Lagrangian (12) reads:

LY = −J+H− − J−H+ − JHH − JAA0 − Jhh. (13)

In this equation, J+, J−, JH , JA and Jh denote contributions of the fermionic fields of the SM:

J± = J±(q) + J±(l), JH = J
(q)
H + J

(l)
H , JA = J

(q)
A + J

(l)
A , Jh = J

(q)
h + J

(l)
h . (14)

Here operators J−(q), J+(q), J (q)
H , J (q)

A and J
(q)
h contain quark fields, while J−(l), J+(l), J (l)

H ,
J
(l)
A and J (l)

h consist of leptonic fields. These terms are given in Appendix.
Lagrangian (1) in terms of the mass eigenstates reads:

Ls =
1

2

3∑
a=1

(∂µGa)
2 + ∂µH+∂µH

− +
1

2
(∂µA0)

2+

+
1

2
(∂µH)2 +

1

2
(∂µh)

2 − V (H±;A0;H;h). (15)

Hereafter we enumerate fieldsH+, H−, H and A0 with one index ”a”:

{H+;H−;H;A0} = {Ha}, a = 1; 4.

Now we derive the effective action Γeff of the light particles of the theory. Γeff describes
the interactions of the light particles in the processes where the nonminimal Higgs bosonsH±,
H and A0 do not appear in the initial or final states. Instead, they participate in the interactions
as the virtual states only, and contribute the lowenergy dynamics via the effective operators of
the SM fields. We integrate over the nonminimal scalar bosons and derive Γeff :

eiΓeff =

∫
DHDA0DH+DH− exp

(
i

∫
d4xL

)
(16)

Since L contains the terms which are cubic and quartic in the scalar fields, we calculate Γeff in
the Gaussian approximation. That is, we expand action of the scalar fields near some classical
field configuration Ha

class,

S[h;Ha] =

∫
d4xL = S[h;Ha

class] +

∫
d4x

δS

δHa(x)

∣∣∣
Ha=Ha

class

∆Ha(x)+

+
1

2

∫
d4x1d

4x2
δ2S

δHa(x1)δHb(x2)

∣∣∣
Ha=Ha

class

∆Ha(x1)∆Hb(x2) +O((∆Ha)3),

∆Ha(x) = Ha(x)−Ha
class(x). (17)

The fieldsHa
class are such that S has a minimum atHa

class, and we find this configuration as the
solution to the classical motion equations:

δS

δHa(x)

∣∣∣
Ha=Ha

class

= 0 ⇒ ∂2Ha
class +

∂V

∂Ha

∣∣∣
Ha=Ha

class

− ∂LY

∂Ha

∣∣∣
Ha=Ha

class

= 0. (18)

Simultaneously, we neglect all of the terms which contain ∆Ha(x) in powers which are big
ger than two in the expansion (17). In this way, effective action Γeff accounts only for the
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contributions of small quantum fluctuations over the classical backgroundHa
class.

Classical motion equations (18) are nonlinear, and we solve them approximately, similarly
to [3]. In the zeroth order in the scalar selfcouplings and for energies |p2| ≪ Rem2

12, |p2| =
O(v2), the solutions are

H±
class ≈ −

sβcβ
Rem2

12

J±,

A0class ≈ −
α2s2(α−β) + α3(1 + c2(α−β))

2c2α−β

h−
s2α + 2s2β − s2(α−2β)

8c2α−βRem
2
12

JA−

−
α2(s2α − s2(α−2β) − 2s2β) + α3(c2α − c2(α−2β))

8c2α−βRem
2
12

JH ,

Hclass ≈
s2(α−β)

2c2α−β

h+
sβcβ(α3s2(α−β) − α2c2(α−β)) + α2sβcβ

2c2α−βRem
2
12

JA −
s2β

2c2α−βRem
2
12

JH .

(19)

Here we neglected the kinetic terms in the equations (18) within the lowenergy approximation

|p2| ≪ |Rem2
12| ⇒ |∂2H±| ≪ Rem2

12|H±|, |∂2H| ≪ Rem2
12|H|, |∂2A0| ≪ Rem2

12|A0|.

We insert the solutions (19) into the Lagrangians Ls and LY , and get

Ls[h;H
a
class] =

1

2

3∑
a=1

(∂µGa)
2 +

1

2c2α−β

(∂µh)
2 − 1

2
µ2h2 − λ(3)h3 − λ(4)h4−

− εh(C1JH + C2JA)−
ε

v
h2(C3JH + C4JA)−

ε

v2
h3(C5JH + C6JA)−

−
εs2β(α3 + α2tα−β)

2v2c2α−β

JA∂
2h+

εs2βtα−β

2v2c2α−β

JH∂2h, (20)

LY [h;H
a
class] = −h

(
Jh −

α2s2(α−β) + 2α3c
2
α−β

2c2α−β

JA +
s2(α−β)

2c2α−β

JH

)
−

−
ε(s2α + 2s2β − s2(α−2β))

8v2c2α−β

J2
A −

εs2β
2v2c2α−β

J2
H+

+
εs2β
v2

J+J− −
εs2βsα−β

v2c2α−β

JAJH (α3cα−β + α2sα−β) . (21)

Here we have taken into account only the operators of up to sixth order and neglected the others,
which are suppressed by the factors (Rem2

12)
−d, d ≥ 2. µ2, λ(3), λ(4) and Ci, i = 1; 6 are

constants. Their values are as follows

µ2 = κv2, λ(3) = − κv

2cα−β
, λ(4) =

κ

8c2α−β

,

κ =
1

8c2α−β

[
λ′ + 4λ

(−)
12 c2β + λ′′c4β

]
,

λ
(±)
12 = λ1 ± λ2, λ′ = 3λ

(+)
12 + 2λ345, λ′′ = λ

(+)
12 − 2λ345, (22)
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C1 = −
s2β

16c3α−β

[
λ
(−)
12 (sα−3β + 3sα+β) + λ′sα−β + λ′′sα+3β

]
,

C2 =
s2β

32c3α−β

[
λ′′(α3cα−5β + α3cα+3β + 2α2sα+3β) + 2λ′(α3cα−β + α2sα−β)−

− 2Imλ5(s2α + 2s2β − s2(α−2β))+

+2λ
(−)
12 (α2sα−3β + 3α2sα+β + 2α3cα−3β + 2α3cα+β)

]
, (23)

C3 = − 3

2cα−β
C1, C5 =

1

2c2α−β

C1, C4 = − 3

2cα−β
C2, C6 =

1

2c2α−β

C2. (24)

As one can see, the corrections to the 2HDM are linearlydependent. Only C1, C2, κ and
cos (α− β) could be independently measured at low energies, in the processes with fermions
and the SM Higgs boson in the external states.

Nowwe turn to the contribution of the quadratic terms in the Gaussian approximation (17).
Second functional derivatives in the expansion (17) could be represented in the following matrix
form:

δ2S

δHa(x1)δHb(x2)

∣∣∣
Ha=Ha

class

∆Ha(x1)∆Hb(x2) =


∆H+

∆H−

∆H
∆A0


T

MS


∆H+

∆H−

∆H
∆A0

 ,

MS = M
(0)
S + δMS , M

(0)
S = −


0 ∂2 +m2

H+ 0 0
∂2 +m2

H+ 0 0 0
0 0 ∂2 +m2

H 0
0 0 0 ∂2 +m2

A

 ,

δMS = −


0 δ+− δ+H δ+A

δ+− 0 δ−H δ−A
δ+H δ−H δHH δHA

δ+A δ−A δHA δAA

 . (25)

As we can see here, the matrixM (0)
S contains the inverse propagators of free fieldsH±,H and

A0. The functional integral of exponent of the quadratic terms is∫
DHDA0DH+DH− exp

[
i

2

∫
d4x1d

4x2
δ2S

δHa(x1)δHb(x2)

∣∣∣
Ha=Ha

class

×

×∆Ha(x1)∆Hb(x2)
]
= (detMS)

− 1
2 = exp

[
−1

2
Tr lnM (0)

S − 1

2
Tr ln

(
1 +M

(0)−1
S δMS

)]
,

M
(0)
S =


0 G±−1 0 0

G±−1 0 0 0

0 0 G−1
H 0

0 0 0 G−1
A

 . (26)

In this equation, trace is computed over both spatial and discrete indices of the matrixMS . The
term Tr lnM (0)

S does not contain any fields and is constant, so we omit it. The matrix δMS

consists of the terms which come from the quartic part of the potential (2). So the components
of this matrix are proportional to the scalar selfcouplings. Hence, the Taylor series expansion of
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the logarithm in (26) in powers ofM (0)−1
S δMS is equivalent to a perturbative series expansion.

In the first order in the scalar selfcouplings, the last term in the square brackets in (26) reads

exp
[
−1

2
Tr ln

(
1 +M

(0)−1
S δMS

)]
≈ exp

[
−1

2
Tr
(
M

(0)−1
S δMS

)]
=

= exp
[
1

2

∫
d4x

(
2G±(x;x)δ+−(x) +GH(x;x)δHH(x) +GA(x;x)δAA(x)

)]
. (27)

Here δ±(x), δHH(x) and δAA(x) contain only the terms which are proportional to J±, JH ,
JA, J±h, JHh and JAh. G±(x;x), GH(x;x), and GA(x;x) are constants which describe
contributions of heavy scalar loops. We include these terms into the renormalization of fermionic
masses and the corresponding Yukawa couplings. So their contributions are not observable.

Finally, the effective Lagrangian of the 2HDM is

Leff =
1

2

3∑
a=1

(∂µGa)
2 +

1

2c2α−β

(∂µh)
2 − 1

2
µ2h2 − λ(3)h3 − λ(4)h4−

− h

[
Jh +

(
εC2 −

α2s2(α−β) + 2α3c
2
α−β

2c2α−β

)
JA +

(
εC1 +

s2(α−β)

2c2α−β

)
JH

]
−

− ε

v
h2(C3JH + C4JA)−

ε

v2
h3(C5JH + C6JA)−

−
εs2β(α3 + α2tα−β)

2v2c2α−β

JA∂
2h+

εs2βtα−β

2v2c2α−β

JH∂2h−

−
ε(s2α + 2s2β − s2(α−2β))

8v2c2α−β

J2
A −

εs2β
2v2c2α−β

J2
H+

+
εs2β
v2

J+J− −
εs2βsα−β

v2c2α−β

JAJH (α3cα−β + α2sα−β) . (28)

This description of interactions between the SM and the heavy scalars of the 2HDM is valid for
the energies which are much less than Rem2

12. The operators JHh and JAh in (28) correspond
to the Yukawa interactions between h and the fermions. These terms modify the Yukawa cou
plings of the SM. As it is shown in (28), these corrections to the Yukawa couplings are either
proportional to (Rem2

12)
−1, sin (2(α− β)) or α3, so they become small when ε ≪ 1. In par

ticular, in this limit we have the following relations for the mixing angles, using definitions (7)
and (8):

lim
ε→0

tan 2α = tan 2β ⇒ α = β, sin 2(α− β) → 0, lim
ε→0

α3 = 0. (29)

Lagrangian (28) also contains new effective vertexes, which are introduced by interactions
with the additional scalar particles. These are nonrenormalizable contact fourfermion interac
tions J+J−, JAJH , J2

A and J2
H , and contact interactions of the SM Higgs and fermions JHh2,

JAh
2, JHh3, JAh3, JH∂2h and JA∂

2h. These new effective vertexes are suppressed by the
factor (Rem2

12)
−1.
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When ε ≪ 1 we have the following expressions for the constants in (22), (23) and (24):

lim
ε→0

µ2 = κv2, lim
ε→0

λ(3) = −1

2
κv, lim

ε→0
λ(4) =

κ

8
,

lim
ε→0

κ =
1

8

[
λ′ + 4λ

(−)
12 c2β + λ′′c4β

]
,

lim
ε→0

C1 = −
s2β
16

[
2λ

(−)
12 s2β + λ′′s4β

]
,

lim
ε→0

C2 =
s2β
32

[
2α2λ

′′s4β − 8s2βImλ5 + 4α2λ
(−)
12 s2β

]
,

lim
ε→0

C3 = −3

2
C1, lim

ε→0
C5 =

1

2
C1, lim

ε→0
C4 = −3

2
C2, lim

ε→0
C6 =

1

2
C2.

As it follows from these equalities, in the decoupling limit the relations between λ(4), λ(3) and
µ2 are the same as those in the potential of the minimal SM Higgs boson, up to the sign of the
h field.

However, transformation properties of h are not identical to those of the SM Higgs boson
when ε → 0. In this limit, h does not become a CPeven field, as in the oneHiggsdoublet SM.
Even when additional scalar bosons become heavy, the mixing angle α2 does not vanish, so h
contains the contribution of the CPodd states c1 and c2, which is proportional to α2,

lim
ε→0

α2 =
Imλ5c2βs2β

t2β(λ1c2β − λ2s2β)− 2s2βReλ5 − s2β(λ1c2β + λ2s2β)
. (30)

Hence, some effects of CP violation could be detected in processes with the h boson.
4. Discussion and conclusions

In the previous sections we discussed the scenario when one of the 2HDM scalar particles
has a mass similar to that of the SM Higgs boson, and the other model states are heavy. We have
obtained the analytical expressions for the effective operators describing interactions between
the SM fermions and the lightest particle of the twoHiggsdoublet model, in terms of the 2HDM
parameters. The considered potential of the scalar fields also introduces a small CPviolation.
It was shown that the angle α2, which describes mixing of the scalars with opposite CPparity,
does not vanish in the limit when heavy scalars decouple, and the lightest neutral mass eigenstate
of the model is not the eigenstate of the CP transformation. Hence, CPviolation in the 2HDM
is potentially visible in the experiments at low energies, and additional interactions within the
scalar sector could be identified. Besides, we found that parameters α2 and α3 also contribute
the effective vertexes in the lowenergy EL (28).

At a tree level, the 2HDM introduces reactions mediated by the charged scalarsH±, which
are absent in the SM with the one Higgs doublet. In the low energy region, these processes are
described by the effective operators J+(q)J−(q), J+(l)J−(l), J+(q)J−(l) and J+(l)J−(q). Similar
processes take place in the SM, too, but they are mediated only by the vector bosonsW±.

Effective Lagrangian (28) also introduces the new vertexes, which describe annihilation of
the fermionantifermion pair and the subsequent production of one, two or three Higgs bosons.

Numerical predictions of the model with the EL (28) are left beyond the scope of this paper,
and will be studied in a separate paper.
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Appendix
The mass matrices of the scalar fields in 2HDM are

M2
a =

[
Rem2

12

v1v2
− 1

2
(λ4 + Reλ5)

](
v22 −v1v2

−v1v2 v21

)
,

M2
bc =


v2
v1
Rem2

12 + λ1v
2
1 −Rem2

12 + λ345v1v2
v2
v1
M2

bc23 −M2
bc23

−Rem2
12 + λ345v1v2

v1
v2
Rem2

12 + λ2v
2
2 M2

bc23 −v1
v2
M2

bc23
v2
v1
M2

bc23 M2
bc23 M2

bc33 −v1
v2
M2

bc33

−M2
bc23 −v1

v2
M2

bc23 −v1
v2
M2

bc33
v21
v22
M2

bc33

 ,

M2
bc23 =

1

2
Imλ5v1v2, M2

bc33 =
v2
v1

Rem2
12 − Reλ5v

2
2. (31)

Yukawa’s interactions of the 2HDM mass eigenstates with the SM fermions is described by the
terms in (13). The contributions of quarks J±(q), J (q)

H , J (q)
A and J (q)

h are as follows:

J−(q) =
∑
f ;f ′

[(
y
2(1)(q)
ff ′ cβ − y

1(1)(q)
ff ′ sβ

)
u
(f)
L d

(f ′)
R +

(
y
1(2)(q)∗
ff ′ sβ − y

2(2)(q)∗
ff ′ cβ

)
u
(f ′)
R d

(f)
L

]
,

(32)

J
(q)
H =

1√
2

∑
f ;f ′

{[
−y

1(1)(q)
ff ′ sα + y

2(1)(q)
ff ′ cα + iα2

(
−y

1(1)(q)
ff ′ sβ + y

2(1)(q)
ff ′ cβ

)]
d
(f)
L d

(f ′)
R +

+
[
−y

1(2)(q)
ff ′ sα + y

2(2)(q)
ff ′ cα + iα2

(
y
1(2)(q)
ff ′ sβ − y

2(2)(q)
ff ′ cβ

)]
u
(f)
L u

(f ′)
R + h. c.

}
, (33)

J
(q)
A =

1√
2

∑
f ;f ′

{
ydd

(f)
L d

(f ′)
R + yuu

(f)
L u

(f ′)
R + h. c.

}
,

yd = i
[
−y

1(1)(q)
ff ′ sβ + y

2(1)(q)
ff ′ cβ + i

(
−y

1(1)(q)
ff ′ (α3cα + α2sα) + y

2(1)(q)
ff ′ (α2cα − α3sα)

)]
,

yu = i
[
y
1(2)(q)
ff ′ sβ − y

2(2)(q)
ff ′ cβ + i

(
−y

1(2)(q)
ff ′ (α3cα + α2sα) + y

2(2)(q)
ff ′ (α2cα − α3sα)

)]
,

(34)

J
(q)
h =

1√
2

∑
f ;f ′

{[
−y

1(1)(q)
ff ′ cα − y

2(1)(q)
ff ′ sα + iα3

(
−y

1(1)(q)
ff ′ sβ + y

2(1)(q)
ff ′ cβ

)]
d
(f)
L d

(f ′)
R +

+
[
−y

1(2)(q)
ff ′ cα − y

2(2)(q)
ff ′ sα + iα3

(
y
1(2)(q)
ff ′ sβ − y

2(2)(q)
ff ′ cβ

)]
u
(f)
L u

(f ′)
R + h. c.

}
, (35)

The contributions of leptons are analytically the same. They could be found if one substitutes
utype quarks with neutrinos and dtype quarks with electrons, of the corresponding generation.

From the Yukawa Lagrangian (12) we also have the mass terms for the fermion fields

−Lmass =
1√
2

∑
i=1,2

vi
∑
f ;f ′

[
y
i(1)(q)
ff ′ d

(f)
L d

(f ′)
R + y

i(2)(q)
ff ′ u

(f)
L u

(f ′)
R +

+y
i(1)(l)
ff ′ e

(f)
L e

(f ′)
R + y

i(2)(l)
ff ′ ν

(f)
L ν

(f ′)
R + h.c.

]
. (36)

19



M.S. Dmytriiev, V.V. Skalozub

References
1. Skalozub V. On Direct Search for Dark Matter in Scattering Processes within Yukawa

Model / V. Skalozub, M.Dmytriiev // Ukrainian Journal of Physics – 2021. – Vol. 66(11),
936, arXiv:2007.06269v2 [hepph]

2. Marzocca D. BSM Benchmarks for Effective Field Theories in Higgs and Elec
troweak Physics / D.Marzocca (ed.), F. Riva (ed.), J. Criado, S. Dawson, J. de Blas,
B. Henning, D. Liu, C.Murphy, M. PerezVictoria, J. Santiago, L. Vecchi, LianTaoWang
// arXiv:2009.01249 [hepph] – 2020. – report number: LHCHXSWG2019006

3. BéluscaMaïto H. Higgs EFT for 2HDM and beyond / H. BéluscaMaïto, A. Falkowski,
D. Fontes, J. C. Romão, J. P. Silva // Eur. Phys. J. C – 2017. – 77, 3:176, DOI:
10.1140/epjc/s1005201747455

4. Ivanov I. Building and testing models with extended Higgs sectors / Igor P. Ivanov //
arXiv:1702.03776 [hepph] – 2017. – DOI: 10.1016/j.ppnp.2017.03.001, report number:
CFTP/17002

5. KozhushkoA.The parametric space of the twoHiggsdoublet model and Sakharov’s
baryogenesis conditions / A.Kozhushko, V. Skalozub // Ukr. J. Phys. – 2011. – Vol. 56, 5:
431 – 442.

6. Ginzburg I. F. Symmetries of Two Higgs Doublet Model and CP violation /
Ilya F. Ginzburg, MariaKrawczyk // Phys. Rev. D – 2005. – 72, 115013

7. Gunion J. CPconserving twoHiggsdoublet model: The approach to the decoupling limit
/ John F. Gunion and Howard E.Haber // Phys. Rev. D – 2003. – 67, 075019

8. Ginzburg I. F. TwoHiggsDoublet Models with CPviolation / I. F. Ginzburg,
M.Krawczyk, P. Osland // arXiv:hepph/0211371 – 2002. – report number: CERN
TH/2002330, IFT 40/2002

9. Gunion J. The Higgs Hunter’s Guide / J. F. Gunion, H. E. Haber, G. L. Kane, S. Dawson
// Front. Phys. – 2000. – 80: 1 – 404.

10. GulovA.Renormalizability andmodelindepentent description ofZ ′ signals at low energies
/ A.Gulov, V. Skalozub // Eur. Phys. J. C – 2000. – 17: 685 – 694.

11. Ciafaloni P. Effective Lagrangian of the two Higgs doublet model / P. Ciafaloni and
D. Espriu // Phys. Rev. D – 1997. – 56, 1752

12. Santos, R. Renormalization of twoHiggsdoublet models / R. Santos, A. Barroso // Phys.
Rev. D – 1997. – 56, 9

13. Rubakov V. Electroweak Baryon Number NonConservation in the Early Universe and in
High Energy Collisions / V. Rubakov, M. Shaposhnikov // Usp.Fiz.Nauk – 1996. – Vol. 166:
493 – 537.

20


