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We study the quantum states of the black hole model in the configuration space. To this end, we 

investigate the properties of the configuration space of the Einstein–Maxwell set of equations in the T-

region. We limit ourselves to considering the T-region, where the fields under consideration have a dynamic 

meaning. Based on the standard action for the of Einstein–Maxwell set of equations, we construct the 

reduced action for the spherical symmetry case. Using the Hamiltonian constraint, we exclude the non-

dynamic degree of freedom from the reduced action, thereby passing to the configuration space. In the new 

representation of the system, we study the induced dynamical system in the configuration space. It turns 

out that the induced supermetric is reduced to a quasi-Cartesian form. The laws of charge and mass 

conservation, which the system contains, together with the Hamilton constraint, completely determine the 

state of the black hole. They allow one to find the momenta and the action of the system in terms of field 

variables and conserved quantities, as well as the trajectory of motion in the configuration space. The black 

hole quantization is reduced to the construction of the quantum states for the system with a fixed mass and 

charge in a three-dimensional pseudo-Euclidean configuration space The Hamilton constraint is associated 

with the DeWitt equation, the latter is constructed using the Laplace–Beltrami operator, which is 

Hermitian with respect to the natural measure. To construct a Hermitian mass operator, it suffices to 

restrict ourselves to partial derivatives with their corresponding ordering. For the physical states satisfying 

the DeWitt equation to be also eigenfunctions of the mass operator, the compatibility conditions must be 

satisfied. In this case, we arrive at the corresponding ansatz. Its substitution into the DeWitt equation leads 

to a self-consistent solution of the quantum DeWitt equation and equation for the eigenvalue of the mass 

operator. The constructed model describes the quantum states of a charged black hole in the configuration 

space with continuous mass and charge spectra. 
Keywords: spherically symmetric configuration, minisuperspace, Hamilton operator, mass and charge 

operators, compatibility condition. 
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1. Introduction 

One of the most important tools of quantum gravity is the method of the Feynman path 
integral. However, it can be assumed that the divergence of the two-loop amplitude arising 
here is related to the general failure of the perturbation theory in general relativity (GR). 
Therefore, when studying black holes (BH) apparently, we must use a non-perturbative 
quantization approach. Note that the complexity of some problems can be mitigated with a 

model approach. One of the popular models is spherically symmetric (SS) configurations of 
gravitational and electromagnetic fields. 

As is well known, the space-time (ST) metric for SS configuration of the 
electromagnetic and gravitational fields in GR admits the Killing vector. In the R-region, 
where this vector is timelike, the fields do not have dynamic degrees of freedom. By virtue of 
this, to study quantization issues, we limited ourselves to considering the T-region, where 
these fields have a dynamic meaning [1, 2]. 

2. Classical system states in the configuration space 

We write the action of gravitational and the electromagnetic field system in the standard 
form  

4
(4) 01
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c
S R F F gdx drd d

c


  

 

 
    

 
 + (boundary terms) (1) 

where  4
R is the scalar curvature; 

, ,F A A       is the tensor of the electromagnetic 

field; detg g . In the T-region with the SS metric  
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after dimensional reduction, the action (1) is reduced to the following [1]: 
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where 01 1,0 ,0E F A    . In characteristic variables , R  [3]: 2f = N R ξ , h = ξ R  

and the metric (2) takes the form 

   
2 2

2 0 1 2 2

R

R
ds Ndx dx R d





   , (4) 

In this case, the action can be rewritten as follows  

 0 11

2

-S = L dx ,  L= N I + NU
c , (5) 

where L is the Lagrangian of the reduced system with kinetic and potential parts 

4 4
2 2c c

I =  ξR + R φ ,   U =
κ κ

  (6) 

Here it is marked 
0

,0 ,0 ,0, , .R= R x          

From the Lagrange function (5) the constraint and the multiplier N values follow: 
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l
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2
= = .

I
N I

U c

  (8) 

Using the formula (8), action (5) is converted into action ST  in the configuration space 
(CS): 

0 0

0 ΩT H=S = L  dx = μ I  dx = μ d   , (9) 

Herewith 

2
0 0

T

μc
dS = μ Idx = Ndx = μd


 , (10) 

4
2 2 2= >0a b

ab

c
d G dq dq = dξdR+ R dφ

κ
  , (11) 

where 
2d  is the CS metric in coordinates:   ,  , aq R  , cl  . 

The determinant 
8 2 2=det  = 4 <0abG G c R  defines the natural measure in 

the CP: 
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 (12) 

Note that with the help of field variable transformations 
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(13) 

where 
2 ,c   the metric (10) is reduced to the Lorentz form 

2 2 2 2 2

0d 0c d dx dy      . (14) 

From the dynamic system (5), (6) taking into account (8) and (10), we find the momenta 
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The Legendre transformation 

 -a

a RNH P q L P P R P L        (16) 

of the dynamical system (5), (6) leads to the Hamiltonian constraint 
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 0.
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(17) 

Further, we define the following function of variables of electromagnetic field: 

 
2 2

2, ,
c R c d

Q N R P R const
l N d




 


   


, (18) 

which persists and is equal to the charge of the configuration within the region of radius 

R. Adhering to [8], we will call it the charge function of the system. 
In addition, there is another conservation law for the SS system of Einstein-Maxwell 

equations [9] 

 
2 3 2

, , 2 2
1

2 2

ab
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c R E
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     , (19) 

which is called the mass function. For the T-region with the metric (4), it takes the form 

2 3
2 2

2 4

1

2
tot

c R
M R R m const

N c


 



  
      

  

. (20) 

Expressing the mass function through momenta  P and  P , we obtain  

2
2 2

2 4 2

2 1

2 2
tot

c
M R P P

l c l R
 





   . (21) 

or, taking into account = cP lq , we have 
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c q
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     . (22) 

The conservation laws totM  = m and Q = q, together with constraint (17), completely 

determine the state of the BH. Indeed, they make it possible to express the momenta 

 , ,RP P P   and the action S in terms of field variables  , ,R   and conserved 

quantities q and m. 
So from the mass function (22) we find 

3

,
2

T

lc R
P F
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m q
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     (23) 

Finally, from constraint (17) and relation (22) for the momentum 
RP , we find 

3 2

4 2
= 1
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T

lc q
P

RF c R

 



 
 

 

 
(24) 

To find the action  , ,S R   as a function of field variables and conserved 

quantities, we write the differential 

 R RdS P d P dR P d P d P dR lq c d           . 

Hence, using the integrability conditions = RP R P      and (23-24), we find 

2
lq

S P
c

    or 

3

g q T

lc l
S S S RF q

c
 


    . (25) 

Further, from the formulas S ,m qm la S q la      , where 
ma  and qa  are 

constants, we find the trajectories of the system in the CS [8]. 

3. Quantum states of the system in the configuration states 

The quantum states of the field configuration under consideration are determined by 
the wave function Ψ(R, ξ, ϕ) in the CS with the coordinates{R, ξ, ϕ}. We define the 
momentum operators in the coordinate representation, where instead of partial derivatives 
the covariant derivatives with respect to the metric (11) are used 

ˆ ˆ ˆ, , PR RP i P i i             (26) 

The Hamiltonian constraint H = 0 (13) is associated with the quantum analogue 

( 0H  ) ‒ the DeWitt equation 

   2 2 2ˆ ˆ ˆ 0.
2 2

ab

a b

c c
H G P P

l l
           (27) 

Moreover, the momentum square operator 
2 2ˆ ˆ ˆab

a bP G P P     is associated with 

the Laplace–Beltrami operator Δ with respect to the metric (11) in the CS 
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(28) 

Using the metric (11) and 8 2 2 = 4G c R , we find  

2 2

4 4 2 2

2 2 1 1
.

c
R

c R R R R R

 

 

     
    

    
 (29) 

The introduced operator Δ is Hermitian with respect to the natural measure (12) of the 
CS. 

To construct the Hermitian total mass operator, in CS with the volume element (12), 

it is sufficient to use the following ordering of operators: 2 ˆ ˆP P P   . It turns out 

here that the momenta entering into the functions of charge (18) and mass (21) can be 
associated with partial derivatives: ˆ ˆ,P i P i          . Thus, the 

charge (18) and the total mass (21) correspond to operators 

ˆ ,
c c

Q P i
l l





  


 

2 2 2 2 2

2 4 2

1 4ˆ
2

l c
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 (30) 

The introduced operators satisfy the commutation relations 

2

2 4

2 ˆ ˆˆ ˆ ˆ ˆ ˆ, ~ 0, , 0, , 0H M H H Q M Q
l c






        

     
 (31) 

Further, we construct states with the fixed mass and charge, i.e., states corresponding to 
the eigenfunctions and eigenvalues of the mass and charge operators 

ˆ ˆ,q q m mQ q M m     . (32) 

Writing the first equation expanded form, we obtain 

- q q

ic
q

l


 


 


     

 i ql c

q Ae


   

Therefore, the general wave functions of the DeWitt and charge operators, as well as the 
operators of the mass and charge, can be represented in the form 

     

     

, R = , R ,

= , R = , R .

i ql c

q

i ql c

m m q m

e

e





    

    

 



 (33) 

where the functions ψ and ψm satisfy the equations 
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(35) 

In the Planckian and corresponding dimensionless quantities  
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the system of differential equations (34) and (35) can be rewritten as follows  

2 2 2
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1
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2 4x y y x y

   


  
    

    

 (36) 

2 2 2
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m m
mx y

x x y

   
 

  
     

   

 (37) 

According to (31), the mass operator M weakly commutes with the Hamiltonian H. In 

order for the physical states ψ satisfying the DeWitt equation (34) to be also 
eigenfunctions of the mass operator (35), the set of equations (36), (37) must have a 
common solution ψ = ψm. The compatibility condition of this set 

2 2

2
0

x x y y x

    
 

    
 

leads to the equation 

2 2 2

2

1 1
1 2 2

2
y y

y x x y y yx y

    
  

      
           

      

 (38) 

After the replacement 
ze  , we arrive to the linear inhomogeneous partial differential 

equation of the first order 

2 2 2

2

1 1
1 2 2

2

z z
y y

y x x y y yx y

  
 

      
           

      

 (39) 

From its characteristic equation 

2 2 2 2

2

1 2 2

dx xdy xydz

y y y y y    
  

    
 (40) 

two integrals follow: 

2

1 2, 2ze y C x y C
y




 
    

 
 (41) 

where C1 and C2 are arbitrary constants. The common integral can be represented as 

21
2ze F x y

yy




  
    

  
 

Here F is an arbitrary function of its argument. Substituting this result, for example, into 
the equation (36), we obtain 
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2

F +xZF - 0
4

F


    

where F  ‒ is the derivative of the function F with respect to the argument. The solution 
of this equation, regular on the horizon FT = 0, has the form 

 
2

0, 2 .
C

x y J x y
yy


  

  
       

 (42) 

where J0 is Bessel functions of the first kind of zero order.  

Returning to the original variables and taking into account 
ze   and (33), we 

obtain the following, regular on the horizon solution 

   / /

0 2
, ,

pliql c iql c

T

pl

l l
R e C J RF e

R l

     
 

    
 
 

 (43) 

where the function FT is defined in (23). As a result, we get a model of a charged BH with 
a continuous spectrum of mass m and charge q. 

4. Conclusions 

The considered field configuration allows two integrals of motion: total mass and 
charge, so the dynamical system turns out to be completely integrable. Together with the 
constraint, they completely determine the momenta and the action, as the functions of 
field variables and conserved quantities in the CS. Moreover, from the action you can 
find the trajectory of the system motion in the CS. This defines the classical picture in 
CS. We also carried out the quantization of a black hole by constructing the quantum 
states of the system with the certain mass and charge in a three-dimensional pseudo-

Euclidean CS. For that, we constructed the DeWitt equation with the Laplace-Beltrami 
operator, which is Hermitian with respect to the natural measure in the CS. For building 
the Hermitian mass operator, we can restrict ourselves to partial derivatives, but with their 
corresponding ordering. The compatibility condition for the DeWitt equation and the 
equation for the eigenfunctions of the mass operator is solved by the method of 
characteristics and leads to the corresponding ansatz. Using this ansatz, we have obtained 
a self-consistent solution of the DeWitt equation and the equation for the eigenvalue of 

the mass operator. As a result, we obtained the charged BH model, whose quantum states 
in the CS are described by a wave function with continuous mass and charge spectra. 
Note that the formulas obtained here are consistent with the results of [10] obtained by a 
different method. 
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