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FLUCTUATION KINETICS IN SYSTEM IN THE PRESENCE OF RANDOM 
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The evolution equation of general form for the parameters of the reduced description (RDP) of 

system in the presence of a random external field is used to describe the dynamics of the system. The field 

causes fluctuations of RDP. With taking into account the fluctuations, the system is described along with 

the average value of the RDP itself by the average values of all RDP products (fluctuations) or their 

correlation functions. For the generating function of these quantities, a closed time equation of the 

fluctuation kinetics is derived. The general initial form of the time equation for RDP allows investigating 

kinetic and hydrodynamic states in a unique way without specifying the spatial dependence of quantities. 

Compared with the known previous works, this greatly simplified the study. The closed time equation for 

the generating function (the equation of the fluctuation kinetics) is derived using the generalized Furutzu–

Novikov theorem, the proof of which is simplified in the paper. The external field is considered as a 

Gaussian stationary process with a correlation time much shorter than the characteristic time of system 

evolution. On this basis, a small parameter is introduced, and the corresponding perturbation theory is 

built. Cases of the field which is introduced through RDP and directly (additive field) are considered. The 

definition of a generalized nonlinear fluctuation-dissipation theorem is proposed. To illustrate the 

developed fluctuation kinetics, the approximations of binary correlations are considered, in which more 

complex correlations are neglected, as well as the states around equilibrium. Fluctuation hydrodynamics, 

which is compared with the Landau–Lifshitz theory, is considered as an application. 

Keywords: reduced description, random external field, fluctuation-dissipation theorem, correlations, 
generating function, closed equation, fluctuation kinetics. 

Received 05.11.2021; Received in revised form 08.12.2021; Accepted 10.12.2021 

1. Introduction 

The reduced description of nonequilibrium systems taking into account fluctuations as 
additional parameters of the reduced description (RDP) is the leading direction of modern 

research in this field. It is a question of using along with average values ˆf ( ) ( )a at t   of some 

microscopic quantities ˆ ( )a t  all their fluctuations 
1 1...

ˆ ˆf ( ) ( )... ( )
n na a a at t t    ( 2 n   ) 

(instead of which it is convenient to use corresponding correlations). A number of such 

studies have been performed in terms of multiparticle distribution functions 1 1f ( , )x t , 

1f ( ,..., , )n nx x t  ( 2 n   ). At the same time, the use of distribution functions smoothed on a 

microscopic scale proved to be fruitful. The results of such studies are summarized in [1, 2], 
in which the source of fluctuations was the uncertainty of the initial state of the system. Over 
time, the idea of using the solutions of time equations for the RDP of the system as 

microscopic values ˆ ( )a t  has emerged. Uncertainty of the initial state of the system or the 

presence of a random external field was considered as a source of fluctuations. The results of 
such studies are summarized in [3], in which a random external field was considered as the 
source of fluctuations. 

Current work is also devoted to the kinetics of the system considering fluctuations. The 

starting point is the time equation for a reduced description of the nonequilibrium state of the 

system by some parameters ( )a t  in the presence of a random external field ( )ih t . These can 

be kinetic equations, in which the system is described by a one-particle distribution 

function f ( , )p x t , hydrodynamic equations, in which the system is described by the densities 

of additive  integrals of  motion ( , )x t , and various  generalizations. A general approach is 
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being developed, which, in contrast to [3], does not require a separate consideration of 

kinetic and hydrodynamic states and does not contain a cumbersome consideration of the 
spatial inhomogeneity of the system state in the formalism. The obtained equations allow 
concretization for kinetic and hydrodynamic states by substitutions of type 

( ) f ( , )a pt x t  , ( ) ( , )a t x t  . On this basis, a nonlinear generalization of the 

fluctuation-dissipation theorem is proposed (previously, such an approach was proposed 
in our work [4]). The relevance of such studies of fluctuation kinetics is confirmed by 
reviews [5-7]. 

The work is structured as follows. In Section 2, a general theory of a reduced 

description of nonequilibrium systems in the presence of a random external field is 
constructed. In Section 3, a generalized nonlinear fluctuation-dissipation theorem is 
formulated and its application to the fluctuation hydrodynamics is discussed. 

2. General equations of the reduced description of system 

in the presence of random external field 

The equation for the parameters of the reduced description ( , )a t h in the presence 

of an external field ( )ih t  has the form 

( , ) ( ( , )) ( ( , )) ( )t a a ai ii
t h L t h s t h h t      , (1) 

where ( )aL  , ( )ais   are some functions ( /t t    ). RDP are considered as functionals 

of the external field ( )ih t . In the case of a random field ˆ ( )ih t , RDP become random 

variables ˆ ˆ( , ) ( )a at h t    (random variables are denoted by a hat). In definition (1) a 

typical form of the kinetic equation 

f ( , ) f ( , )
f ( , ) ( , ) ( ,f ( ))

p pn
t p n p

n n

x t x tp
x t F x t I x t

m x p

 
    

 
,  

and set of hydrodynamic equations 

( , )
( , ) l

t

l

x t
x t

x


   


,       

( , ( )) 1
( , ) ( , ) ( , )nl

t n l

l

t x t
x t F x t x t

x m

 
     


, 

( , ( )) 1
( , ) ( , ) ( , )n

t l l

l

q x t
x t F x t x t

x m

 
     


 

 

are included, where f ( , )p x t  is one particle distribution function, ( , ) : ( , ), ( , ),nx t x t x t    

( , )x t  are the densities of mass, momentum and energy of the system, ( , )lF x t  is the 

force acting on the particle at a point x . 

Properties of quantities ˆ ( )a t are characterized by their average value f ( )a t  and all 

fluctuations (average values of all their products) 

1
ˆf ( ) ( )a at t  ,     

1 1...
ˆ ˆf ( ) ( )... ( )

n na a a at t t     ( 2n  ). (2) 

Average value is taken over all realizations of the field ˆ ( )ih t . Instead of fluctuations it is 

convenient to use corresponding correlations (correlation functions) 
1...

( )
na ag t  
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1 2 1 2 1 2
f ( ) f ( )f ( ) ( )a a a a a at t t g t  , 

1 2 3 1 2 3 1 2 3 1 2 3 2 3 1 1 2 3
f ( ) f ( )f ( )f ( ) ( )f ( ) ( )f ( ) ( )f ( ) ( )a a a a a a a a a a a a a a a a a at t t t g t t g t t g t t g t      

(3) 

and so on. Generating functions for these quantities are given by formulas 

1 1

1

ˆ ( )

...

1 ...

1
(f ( ), ) 1 ... f ( )

!

a aa

n n

n

u t

a a a a

n a a

t u u u t e
n



 

   F , 

1 1

1

...

2 ...

1
( ( ), ) ... ( )

! n n

n

a a a a

n a a

g t u u u g t
n 

  G  

(4) 

and related by the formula 

f ( ) ( ( ), )
(f ( ), ) a aa

t u g t u
t u e


G

F  (5) 

(see, for example, [8]). 

Let obtain an evolution equation for the functional (f ( ), )t uF . Taking into account 

(1) and (4), we have 

ˆ ( ) ˆˆ ˆ(f ( ), ) [ ( ( )) ( ( ) ( )]a aa
u t

t a a ai ia i
t u e u L t s t h t

     F . (6) 

For further conversion of this expression, the identities 

ˆ ( )[ ]
ˆ ( )

0 0
ˆ( ( )) ( ) (f ( ), ) ( )

a aa
a a aa

t u
t u

ee t t u


 

 

 

           


F  

f ( )[ ] ( ( ), ) ( ( ), )
f ( )

0 0
( ) ( f(t))

a aa
a aa a

t u g t u g t u
t u

e e e

  
   
  

 

       
G G

 

( ( ), ) ( ( ), )f f
f

0,f f(t) 0,f f(t)
( f ) ( f )a a a aa a

g t u g t uu u
e e e e

  
 

   

       
G G

 

( ( ), )f
f

f f(t)
(f )a aa

g t uu
e e







 
G

, 

ˆ ˆ( ) ( )
ˆ ˆ ˆ( ( )) ( ( )) ( ( ))a a a aa a

t u t u
e t t e t

u

           
 

, 

(7) 

which take into account (4) and (5) ( ( )  , ( )   are arbitrary functions), are needed. 

Then equation (6) can now be written as 

( ( ), )f
f

f f(t)
(f ( ), ) (f ) ( ) ( , )a aa

g t uu

t a a i ia i
t u e e u L A u t u







    
G

F  (8) 

where it is denoted 
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( )i a aia
A u u s

u

 
  

 
 ,       

ˆ ( )ˆ( , ) a aa
t u

i it u he
  . (9) 

In order to calculate the function ( , )i t u , let introduce the average value of the 

external field ˆ ( )ih t , its fluctuations 
1... 1( ... )

ni i nm t t  and correlations 
1... 1( ... )

ni i nn t t  

ˆ( ) ( )i im t h t ,     
1 1... 1 1

ˆ ˆ( ... ) ( )... ( )
n ni i n i i nm t t h t h t   ( 2n  ). (10) 

Generating functions for these quantities are given by formulas  

1 1

1

ˆ ( ) ( )

1 1 ... 1

1 ...

1
( , ) 1 ... ( )... ( ) ( ... )

!

i ii

n n

n

h t t

n i i n i i n

n i i

m dt dt t t m t t e
n




  

 
 

        M , 

1 1

1

1 1 ... 1

2 ...

1
( , ) ... ( )... ( ) ( ... )

! n n

n

n i i n i i n

n i i

n dt dt t t n t t
n

 

 
 

      N  

(11) 

and are related by a relation like (5)  

( ) ( ) ( , )
( , )

i ii
dt m t t n

m e




    

N
M  (12) 

Let note further that the relation  

ˆ ˆ ˆ ˆ( ) ( ) ( ) ( ) ( )i i ih t a h m t a h a h  ,        
( , )

( , ) ( )
( )

i

i
h

n
a t h a h

t 




 




N
, (13) 

where ( )a h  is a functional of ( )ih t , is true. It can be called the generalized Furutzu–

Novikov formula. Let us prove it by simplifying the proof given in [1]. Consistently it is 
obtained: 

ˆ ˆ( ) ( ) ( )
( ) ( )

, 0 , 0

ˆ ˆ ˆ( ) ( ) ( ) ( ) ( )
( )

i i i ii i
i i

dt h t t dt h t
h t h t

i i
h h

i

h t a h e h t a t e a t
t

 

 

    
       

    

 

  
  


 

( ) ( ) ( , )
( )

( , ) ( ) ( )
( ) ( )

i ii
i

dt m t t n
h t h

i i

m a t e a h
t h t





  
      

  
   

   
  

N

M  

( ) ( ) ( , )
( ) ( , )

( ) ( )
( )

i ii
i

dt m t t n
h t h

i

i
h

n
e m t a h

t





  
      

  






    
   

 

N N
 

, 0

( , )
( , ) ( ) ( )

( )
i

h
i

h

n
m m t a h

h t 




   
    

  

N
M  

ˆ

( , ) ( , )
( , ) ( ) ( ) ( ) ( )

( ) ( )
i i h h

i i
h h

n n
m m t a h m t a h

h t t 
 

 
 

       
      

     

N N
M , 
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which, taking into account formulas of type (7), proves (13) (here 
, 0h 
  denotes equality, 

that is true under condition , 0h  ). 

Further it is assumed that the external field ˆ ( )ih t  is a stationary Gaussian process for 

which 

1
( , ) ( ) ( ) ( , )

2
i i ii

ii

n dt dt t t n t t

 

 

  

       N , 

( )i im t m ,      ( , ) ( )ii iin t t n t t    ,      ( ) ( )ii i in t n t  . 

(14) 

In this case, formula (13) gives 

'

( )
( , ) ( )

( )
i iii

i

a h
a t h dt n t t

h t



 


  


   (15) 

and allows, taking into account (9) and (15), to represent the function ( , )i t u  from (9) in 

the form 

ˆ ( )

,
ˆ( , ) (f ( ), ) ( ) ( , , ) a aa

t t u

i i ii a aia i
t u m t u dt n t t u t t h e



  

       F  (16) 

where the field susceptibility is introduced, and causality considerations are taken into 

account 

( , )
( , , )

( )

a
ai

i

t h
t t h

h t


 


,     ˆ( , , ) 0ai

t t
t t h


  .    (17) 

Let introduce the correlation time 0  of the random field ˆ ( )ih t  

0

( ) 0ii
t t

n t t
 

           (18) 

and the characteristic time T  of the evolution of RDP ( , )a t h , assuming that 0T   . In 

this case ˆ( , , )ai t t h  in (16) can be expanded in powers of t t   near 0t t    

2
0 1 2

1
( , , ) ( , ) ( , )( ) ( , )( ) ...

2
ai ai ai ait t h t h t h t t t h t t           ,    

0

( , , ) 1
( , ) ~

s
ai

ais s s

t t

t t h
t h

t T 

 
 


.          

(19) 

Given this expansion in (16), we have 

( , ) (f ( ), )i it u m t u  F  

ˆ ( )3
0 0 1 1 2 2,

ˆ ˆ ˆ[ ( , ) ( , ) ( , ) ( )] a aa
t u

a ii ai ii ai ii aia i
u n t h n t h n t h O e

 


     

         ,     

0
( ) s

ii s iin d n


     ,      0~ s
ii sn   . 

(20) 
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Taking into account (19), we see that ( , )i t u  has the form of an expansion in powers of 

0 / T   . It is convenient to calculate the functions ( , )ais t h  by writing equation (1) in 

an integral form 

0
( , ) (0, ) [ ( ( , )) ( ( , )) ( )]

t

a a a ai i

i

t h h dt L t h s t h h t          ,  

which gives the equation for ( , , )ai t t h  

( , )0

( ) ( )
( , , ) [ ( )] ( , , ) ( ( , ))

t
a ai

ai i a i ait hi
a a

L s
t t h dt h t t t h s t h

  
 

   
          

 
  (21) 

(it is assumed that (0, )a h  does not depend on ( )ih t ). From here we have 

0 ( , ) ( ( , ))ai ait h s t h   , (22) 

and taking into account equation (1) the relation 

( , )0

( , , ) ( ) ( ) ( , , )
[ ( )]

t
ai a ai a i

i t hi
a a

t t h L s t t h
dt h t

t t

 
  

 

       
   

    
  

( , )

( )
[ ( ( , )) ( ( , )) ( )]ai

a a i ia i
a t h

s
L t h s t h h t    

 

 
     


  , 

(23) 

whence 

1

( , )

( )
( , ) [ ( ( , )) ( ( , )) ( )]ai

ai a a i ia i
a t h

s
t h L t h s t h h t    

 

 
     


   

( ( , )) ( ( , )) ( )ai aii ii
b t h c t h h t 

    . 

(24) 

Substitution (22) and (24) in (20) gives the relation 

( , ) (f ( ), )i it u m t u  F  

ˆ ( )2
0 1,

ˆˆ ˆ ˆ{ ( ( )) [ ( ( )) ( ( )) ( )] ( )} a aa
t u

a ii ai ii ai aii ia i i
u n s t n b t c t h t O e

 


     

         , 

 

which according to (9) has the form of an equation for the function ( , )i t u  

( , ) (f ( ), )i it u m t u  F  

2
0 1 1,

{[ ] (f ( ), )( ) ( ) ( ) ( , )} ( )a ii ai ii ai ii ai i ia i i
u b t un s n n c t u O

u u u
        

  
     

  
 F  

 

(the second identity from (7) is taken into account). The solution of this equation in the 

theory of perturbations in powers of   is given by the formulas 
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(0) (1) 2( , ) ( , ) ( , ) ( )i i it u t u t u O     , 

(0)
0( , ) (f ( ), ) (f ( ), )i i ii ii

t u m t u n A t u 
  F F , 

(1) (0)
1,

( , ) [ (f ( ), )( ) ( ) ( , )]i aii ai ai i ia i i
t u u b t un c t u

u u
     

 
    

 
 F  

(25) 

(operator iA  is defined in (9)). Thus, up to the second order in small parameter , i.e. in 

the approximation of the short time of correlation of the external random field, a closed 

equation for the generating function (f ( ), )t uF  is obtained, which describes the influence 

of fluctuations on the evolution of the system. 

In the basic approximation, the time equation for the generating function (f ( ), )t uF  

according to (7) and (25) has the form 

( ( ), )
f

f(t)
(f ( ), ) ( ) ( ) (f ( ), )a aa

g t u
u

t a a i ia i
t u e e u L m A u t u







     
G

F F

0 (f ( ), )]ii i iii
n A A t u 

 F . 

(26) 

The equivalent equation separately for the cases of kinetic and hydrodynamic states was 
obtained in [3] by cumbersome calculations. 

3. Generalized nonlinear fluctuation-dissipation theorem 

Let discuss some consequences of equation (26) for the generating function 
(f ( ), )t uF . Concretize equation (26) first for the case of linear in the RDP inclusion of the 

external field in (1), i.e., for ( )ai aib bb
s s    ( aibs  are some coefficients). In terms of 

the average value of RDP f ( )a t  and generating function of correlations ( ( ), )g t uG , it 

takes the form 

( ( ), )

,f f(t)
f ( ) ( ) f f

g t

t a a ab b ab bc сb abc
t e L m n






     

G

         

( ab aib ii
m s m ), 

( ( ), ) ( ( ), ) ( ( ), )

f ( )
( ( ), ) ( )

g t u g t u g t

t a a ta
g t u e e u L

 
 
 



 
     

  


G G G

G  

,

( ( ), ) ( ( ), )
a ab a ab bcab abc

b c

g t u g t u
u m u n

u u

 
  

 
 

G G
   

,

( ( ), ) ( ( ), )
f ( ) f ( )a c ab cd b dabcd

b d

g t u g t u
u u n t t

u u

   
    

   


G G
           

( , 0ab cd ii aib ci dii
n n s s 

 ). 

(27) 
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Note, that a similar equation was obtained in [1] separately for kinetic and hydrodynamic 

states by cumbersome calculations in connection with the consideration of spatially 
inhomogeneous states. However, this is not necessary, because the kinetics of 
inhomogeneous systems is embedded in the developed theory after substitutions of the 
type 

( )a x  ,        ( , )abg g x x
 ,      ( )au u x ,      ( )ih h x ;  

( )a x

 


 
,       

( )au u x

 


 
; 

   3... ...
a V

d x


   ,      3... ...
i V

d x


   . 

 

Let now specify equation (26) for the case of inclusion of the external field in (1) 

through the constant, i.e., at ( )ai ais s  . Such an external field can be called additive 

one. In this case the average value of RDP f ( )a t  and the generating function of 

correlations ( ( ), )g t uG  satisfy a simpler system of equations than (27) 

( ( ), )

f f(t)
f ( ) ( )

g t

t a a at e L m






   

G

         ( a ai ii
m s m ), 

( ( ), ) ( ( ), ) ( ( ), )

f ( )
( ( ), ) ( )

g t u g t u g t

t a a ta
g t u e e u L

 
 
 



 
     

  


G G G

G  

ab a bab
n u u             ( 0ab ii ai biii

n n s s 
 ). 

(28) 

According to (28), the time equations for binary and triple correlation functions are 

( ( ), )

f ( )

( ( ), ) ( ) ( )
g t

t ab a b ab

t

g e g t L a b n







 
      

 

G

G  

( ( ), )

( ( ), ) ( ( ), ) ( ( ), ) ( )
g t

t abc b c bc ag e g t g t g t L




   

     
   

G

G G G  

f ( )

( ) ( )

t

a b a c




    


 

(29) 

where it is denoted 

1

1

... ( ( ), ) ( ( ), )
...n

n

n

a a

a a

g t u g t u
u u



 

G G . (30) 

In the simplest approximation, the fluctuation kinetics of the system takes into 
account only binary field correlations and its state is described by the equations 
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2 ( ( ), )

f f(t)
f ( ) ( )

g t

t a a at e L m






   

G

, 

2 ( ( ), )

f ( )

( )
( ) ( )

g t
b

t ab ac abc
c t

L
g e g t a b n







  
     

 


G

 

(31) 

where the function is introduced 

2

1
( , )

2
ab a bab

g u g u u G . (32) 

In equilibrium, equations (31) give expressions for parameters am  and abn  by 

formulas 

eq
2

eq

( , )

f
( )

g

a am e L






  

G

, 

eq
2

eq

( , )
eq

f

( )
( )

g
b

ab acc
c

L
n e g a b







  
    

 


G

. 

(33) 

The second of these formulas should be considered as our nonlinear generalization of the 

fluctuation-dissipation theorem ( eqfa , eq
abg  are equilibrium values of parameters fa , abg ). 

The same understanding of this theorem was proposed in our work [4]. 

Near the equilibrium in the quadratic approximation of the right part, equation (1) 

for RDP has the structure 

eq eq eq
, ,

1
( ) ( f ) ( f )( f )

2
a a b b b a bc b b c cb bc

L M M          . (34) 

In this approximation, the time equations (31) for the parameters 
eqf f fa a a   , 

eq
ab ab abg g g    take the form 

, ,

1
f f

2
t a a b b a bc bcb bc

M M g       , 

eq eq
, , , ,( ) ( ) ft ab b c ac a c bc ac b cd bc a cd dc cd

g M g M g g M g M          . 

(35) 

The fluctuation-dissipation theorem (33) and the expression for the mean field in 

approximation (34) are written as 

eq eq
, ,( )ab ac b c bc a cc

h g M g M   ,       eq
,

1

2
a a bc bcbc

m M g   . (36) 

Let apply the developed formalism for the case of hydrodynamics of a liquid, which 

is embedded in our general theory by substitutions 
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 a kx    ,          ,,ab k kg g x x g   
  ,    3... ...

a V
d x


    (37) 

(with the Fourier transforms). Relevant substitutions are also made in formulas (35) 

 , , , ,( , )a b k k k kM M x x M V M k     
    , 

, , ,( , , )a bc k k kM M x x x M      
   ,   , , ,( , )k k q q k kM V M k q        ; 

,( , ) ( )ab k k k kh h x x h V h k     
    ,   

eq
, ,( )k k k kg Vg k      . 

(38) 

Equations of fluctuation hydrodynamics near equilibrium with quadratic approximation 

of nonlinearities in the right part of the equations of hydrodynamics  ,L x   are given 

by formulas 

,

1
( ) ( , )

2
t k k k q qq

M k M k q g
V

        
       , 

( ) ( )t k q q k q q k q qg M k q g M q g          
           

eq eq
, ,( ) ( , ) ( ) ( , ) kg k q M q k g q M k q k      

       . 

(39) 

These equations were the basis for the study of fluctuation effects in hydrodynamics in a 

known paper by Andreev [9]. In the same approximation, the fluctuation-dissipation 
theorem is given by the formula 

eq eq( ) ( ) ( ) ( ) ( )h k M k g k M k g k    
      (40) 

A simple hydrodynamic matrix ( )M k  at small wave vector according to [8] has the 

form 

,( ) ...
n

n n l n l

Y
M k ik k k

 
  

 

 
    

 
  (41) 

where ,n l   is the matrix of kinetic coefficients,  : , ,n     are the average values of 

energy densities, momentum and mass of the system, n  are the average values of the 

corresponding fluxes. These averages are calculated using the Gibbs distribution w  

ˆSp (0)w    ,   ˆSp (0)n nw    ;   
eq ˆ ˆ( ) Sp ...k kVg k w V

Y



 




     


; 

 3 ˆexp
V

w Y d x x 
   
   , 

(42) 

where   is thermodynamic potential, Y :  , n , 
2( / 2)   are the generalized 

thermodynamic forces ( ,  , n  are inverse temperature, chemical potential and liquid 

velocity). The cap in (42) indicates the microscopic values of the corresponding physical 
quantities. In these terms, the fluctuation-dissipation theorem is expressed by the formula 
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, ,( ) ( ) ...n l n l n lh k k k        , (43) 

an analogue of which was discussed by Landau–Lifshitz [10]. 

4. Conclusions 

Based on the general time equation of the method of the reduced description for 

some parameters ( )a t , fluctuations caused by a random external field ˆ ( )ih t , which is 

considered as a stationary Gaussian process, are investigated (random field functions are 
denoted by a cap). Cases of the field which is included through parameters of the reduced 

description and directly (additive field) are considered. The system is not specified and in 
a single approach the developed theory is suitable for the study of kinetic and 
hydrodynamic processes (in the simplest case, the former are described by a one-particle 

distribution function f ( , )p x t , and the latter by the densities of additive integrals of motion 

( , )x t ). On this basis, the development of [3] is simplified, where such processes were 

investigated separately with an additional complication related to considering spatially 

inhomogeneous states. Fluctuations are described by us (besides the average values f ( )a t  

of parameters ˆ ( )a t ) by all their average products 
1...

f ( )
na a t  (to be short: by the 

fluctuations; 2n  ) or the corresponding correlations 
1...

( )
na ag t . For the generating 

functional of fluctuations (f ( ), )t uF  (correlations ( ( ), )g t G ) in the approximation of the 

small time of the field correlation 0 , a closed time equation (equation of the fluctuation 

kinetics) is derived. In this case, a small parameter 0 / T    is introduced (T is the 

characteristic time of the system evolution) and the contributions of the main and first 
orders in   are taken into account (in [3] only the main contribution was discussed). The 

derivation of the closed equation is based on the generalized Furutzu–Novikov theorem, 
the proof of which is simplified by us somewhat. An interesting problem about the 
possibility of derivation of a closed equation in higher approximations in   is planning to 

be discussed in the next paper. It is noted that the consideration of spatially 
inhomogeneous states is reduced in the developed theory (as in the method of the reduced 

description in general) to the replacements of the type ( ) ( , )a t x t  , 

3

a V
d x


   . The approximations of the developed theory taking into account only 

binary correlations and states close to the equilibrium are considered. Such 
approximations have only been studied by previous researchers. It is proposed to 

introduce the generalized nonlinear fluctuation-dissipation theorem as the time equations 
of fluctuation kinetics in equilibrium state. These equations give an expression for the 
correlations of the random field through the equilibrium and nonequilibrium 
characteristics of the system. To illustrate, fluctuation hydrodynamics in the case of the 
additive field is considered and expressions for the field correlations through fluid kinetic 
coefficients like Landau–Lifshitz ones are obtained. 
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