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The process of cooperative spontaneous emission in a system of two-level emitters interacting via 

electromagnetic field is analyzed using the Bogolyubov reduced description method, which provides the 

possibility of studying the state of the generated field. Field macrostates are described with electric and 

magnetic field amplitudes and binary correlation functions of their components. Since the previously 

obtained set of differential equations describing the Dicke system evolution with considering field 

correlations is very cumbersome, we must find some way of simplifying the model to make it accessible for 

numerical modeling. The general picture of correlation development can be elucidated with using one- and 

two-dimensional models. The paper presents the set of evolution equations for Dicke system with fixed 

orientation of dipole moments of emitters forming a two-dimensional structure. The material equations and 

equilibrium correlations are discussed. The transition to the Cauchy problem for ordinary differential 

equations is proposed. 
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1. Introduction 

The problem of self-organization in a Dicke system of two-level electromagnetic 
emitters with generating the coherent emission pulse arouse persistent interest for more than 
six decades [1]. Basing of spontaneous emission, such Dicke superradiance process opens the 
way to coherent generation, which is alternative to the laser one and possible even in X-ray 
and γ range. At the same time its consideration made the significant contribution into the 
development of non-equilibrium quantum statistical physics and phase transition theory. The 
Bogolyubov reduced description method allows not only to calculate the pulse delay time 

proceeding from the emitter subsystem behavior but also to investigate field states. Deep 
research into the nature of quantum field states based on Glauber approach [2-4] stimulates 
our interest to the process of correlation growth in Dicke model. In 2004 Prof. Sokolovsky’s 
group at Dnipro National University proposed a description of fluctuations in the emitter 
subsystem [5], and since 2008 the binary correlation functions of the electromagnetic field 
have been included into the list of reduced description parameters of the superradiant Dicke 
system [6]. We came to the phenomenon description using the ideas of electrodynamics of 

continuous media. The set of evolution equations for the model under consideration including 
correlation functions is presented in [7] in detail. However, the obtained complicated 
mathematical problem requires some simplification. The natural way of solving the problem 
is transition to the smaller number of dimensions. A one-dimensional system is the most 
attractive due to its simplicity and closeness to the real experimental situations applying 
oblong systems. Such approach has been discussed recently [8] but has not been implemented 
yet. At the same time material equations for this model case seem to be too artificial because 

of long-range correlations. So, it is interesting to study a two-dimensional system using the 
acquired experience. Great attention to two-dimensional systems in modern physics [9] is an 
additional reason for such a program. Hereafter we discuss the view of the set of evolution 
equations for correlation functions at fixed orientation of dipole moments, two-dimensional 
structure of emitter subsystem, field modes in the corresponding plane, and transition to the 
Cauchy problem for the numerical analysis of the correlation picture. 

2. Evolution equations with binary correlations for a two-dimensional Dicke system 

We proceed from of evolution equations describing the behavior of the system of two-

level emitters  interacting  via  electromagnetic field  together  with the generated field, which  
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state in a certain moment is fixed by a set of amplitudes and simultaneous binary 

correlation functions [7]. Such functions include electric and magnetic field components 
and have a tensor character. Point emitter positions are unchanged. Emitter frequencies 
are equal ω, and at the last stage we exclude singularities with the assumption of ω sharp 
distribution near some value ω0. If we pass to the one-dimensional case, i.e., consider the 
fixed orientation of the dipole moments of operation transition matrix elements along Ox 
axis and the wave vectors of the field modes along Oz axis [8], we have an evolution 

picture with 6 variables of field nature: 1 2 1 1 1 2 2 2, , ( ), ( ), ( )E B E E E B B B      , and linear 

density of emitter subsystem energy   (this subsystem is regarded as locally 

equilibrium). The lower indices mean Сartesian components with usual correspondence 
1↔x, 2↔y, 3↔z. Averaged field components and ε depend on z for the one-dimensional 

system (or a cylindric system with small cross-section S [8]). Hatched variables 

correspond to the dependence on hatched coordinates. ( )ab  denotes a binary correlation 

function 
1

( ( ) ( )) { ( ), ( )} ( ) ( )
2

a z b z a z b z a z b z         , { , } denotes operator 

anticommutator, and    denotes the average of certain physical quantities with the 

statistical operator   in the reduced description form. The physical quantities are 

calculated in the second order of the perturbation theory in small parameter d – transition 
dipole moment. Just this approximation allows replacing the transversal electric field with 
the complete field [10]. Similar denotations will be used for a two-dimensional system of 
emitters. 

Let us consider a great number of motionless emitters occupying some area in the 
Oyz plane with a known surface density n (y, z). The same picture will be observed in the 
case of a thin plane layer of thickness h. For simplicity, we assume the fixed orientation 

of the dipole moments of operation transition matrix elements along Ox axis. So, mode 
wave vectors are supposed to be localized in the Oyz plane. The list of reduced 

description parameters includes 10 ones: 1 2 3 1 1 1 2 1 3 2 2, , , ( ), ( ), ( ), ( ),E B B E E E B E B B B          

2 3 3 3( ), ( )B B B B  , and surface energy density of the emitter subsystem ε. The parameters 

depend upon the coordinates y  and z  (and ,y z   for the binary correlation functions). 

Vector field rotors give derivatives with respect to the named coordinates as a 
contribution to the evolution equations. Calculations like [7] result in the set of equations  
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In this set of equations I1 means surface density of the one-component polarization 

current. Using such parameter for the emitter subsystem is natural because we neglect the 
dependence on x. For obtaining the closed set of evolution equations, it is necessary to 
express a medium reply through field parameters. 

3. Material equations for the model under consideration 

In the general case, we can use the only material equation for the medium of 

emitters, i.e., the dependence of volume polarization current density on nE  and 

rotn nZ B , which has the form, characteristic for the presence of spatial dispersion: 

( ) [ ( , ( )) ( ) ( , ( )) ( )]n n n

V

I d E c Z           x x x x x x x x x x  (2) 

where the Fourier images of material coefficients are known [7]: 
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Hereafter bold symbols in function arguments denote vectors. According to our 

supposition, 0( ) ( )w    , and expressions (3) transform into the following ones: 
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We must find a spatial form of material coefficients for using (2) in the set (1). Thus, 
the Fourier transformations should be calculated 

1
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In the thermodynamic limit the transition 3

3
... ...
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TL V
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k  is valid. For our two-

dimensional model this expression acquires the form 2 32
...

(2 )

S
dk dk

Since k1 = 0, for 

arbitrary x x  we neglect the x component, fix the direction of this vector, and try to 

calculate the integral in the polar coordinates. Further on k  and x x  mean modules of 

the corresponding vectors, and φ denotes angle between them. Integrating over φ gives 
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where 0 ( )J k x x  denotes the Bessel function of the 1st kind [11]. Its behavior provides 

the physically convincing view of the material coefficients. Integrating over k  is simple 

when we have 0ω
δ( )k

c
  in the coefficient expression, and the conductivity takes the 

form 
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Integrating over k  for obtaining the second expression of (5) is reduced to the integral 

0

2 2

0

( )kJ k
dk

k a

 


x x

, (8) 

which exists in Cauchy sense only if Im 0a  , then it is expressed through the Bessel 

function of an imaginary argument of the 2nd kind [11]. Thus, to obtain a meaningful 
result, damping should be taken into account. An additional comment is necessary in 
connection with using the surface densities. To reflect this fact, we introduce the factor h 
into the material coefficient expressions. In our case we come to such view of the 
material equation for surface current density 
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Notice that in (9)    
2 2

y y z z      x x , σ is given by (7), ξ is obtained 

proceeding from (8). 
The next problem is obtaining material equations for the correlation functions. Here 

we make use of the relationships substantiated in [7]: 

(2) (2)( ) ( ) ( , ( ))n l n l nlE I E I S n     x x x ,   (2) (2)( ) ( ) ( , ( ))n l n l nlB I B I T n     x x x , (10) 

in which the last terms originated due to the non-commutativity of the operators En and 
Bn. We once more must remind that our consideration is restricted with the reduced 
description parameters in the second order of perturbation theory (pointed out with the 
higher indices (2) in (10)) and expression (9) is valid just in this order. Now it is possible 
to apply (9) in the set (1) and right-hand sides of (10). The calculations like performed for 

the 3-dimensional system give for the last terms of (10) expressions that differ from 0 in 
several cases, i.e., S11, T21, T31. Pay attention that correlation functions are symmetrical in 
respect to transposing correlated variables and arguments. So, we can restrict ourselves 
with specified examples 
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The same technique is applied in the last equation of the set (1) for t   where 1 1( )I E  

means just (2)

1 1( )I E . Thus, we obtain the possibility of rewriting the set of evolution 

equations in terms of one-moment correlation functions. 

4. The final set of equations and prospects of its numerical solving 

Substituting the obtained expressions for current density and binary correlation 

functions including currents calculated in the 2nd order of perturbation theory current into 
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the differential equations of evolution should be done with considering the field nature of 

the selected variables. Integral representations reflecting the presence of spatial dispersion 
in the system of emitters result in integrodifferential kind of final equations. Since the set 
is rather complicated, it seems to be justified giving one of the equations as an example. 
Let us take the 5th equation of the set (1). It is written down for an arbitrary pair of points 

 ,y zx  and  ,y z  x . Integrating variables in the formula for I1 may be denoted 

with double scratched letters  ,y z  . We come to the equation. 
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(14) 

The last term describes equilibrium correlations and does not depend on the emitter 
subsystem state. To calculate it, we apply the relation 

(2) (2)

1 2 2 1 21( ) ( ) ( , ( , ))I B B I T n y z    x x  and take into account using surface densities 

in our consideration. Analogous structures are present in the other evolution equations. 
Their number is enough because scratched and unscratched variables have the same 
domain. The way to the numerical analysis of our problem proves to be attractive due to 
expressing the coefficients in tabulated functions, namely Bessel ones (in the one-

dimensional case we faced with trigonometric functions). The next step to simplification 
is studying the initial stage of excited emitter system evolution when its energy density 
remains almost without changes. Thus, we come to the set of 9 integrodifferential 
equations instead of 5 in the one-dimensional case. Nevertheless, it is possible to simulate 
the process using the program package Mathematica. Our subject is integrodifferential 
equations with partial derivatives. Solving it demands some border conditions, that is not 
physically substantiated. Moreover, we use the formulas for the unlimited medium and 
neglect boundary effects. At the same time, the scheme of solving a boundary value 

problem requires constructing an expansion in basis at each step and hence too much 
time. Our attempts to apply Mathematica were not successful. 

Now the idea of using for modeling the Cauchy scheme when only dependence of 
functions on time is considered. Solving Cauchy problem for ordinary differential 
equations is the mainstream in the process analysis [12]. Early research into fluctuation 
role in Dicke process was based on such approach [13]. Now we must go to the totality of 
functions given on the lattice. Their spatial derivatives can be represented according to a 

difference scheme. For example, when the lattice function is set, the representation of the 

derivative 
2 1 1 2

1
( 8 8 )

12
i i i i iu u u u u

h
   

       is applicable up to the terms O(h4) [12] 

where h is the lattice step. In this way, we expect to obtain the numerical model of 
correlation development in the Dicke process. Obviously, the problem of function 

smoothness and the required number of points should be analyzed. 

4. Conclusions 

The paper presents the set of integrodifferential equations describing the evolution 
of two-dimensional Dicke system with taking into account binary correlations of 
electromagnetic field. The problem is considered with great simplifications: only modes 



S.F. Lyagushyn 

46 

in the plane of the emitter subsystem are considered, and the polarization of emitters is 

assumed to be fixed. This makes the number of parameters acceptable. The set becomes 
closed due to the found form of material coefficients including cylindric functions, but 
the divergence of some coefficients requires a damping process. Comparing with one-
dimensional systems, the behavior of conductivity coefficient is more physically 
convincing. Since direct use of math packages fails for a boundary problem, transition to 
the Cauchy problem with difference representation for derivatives can be proposed. 
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