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The localization of the plane wave expansion is considered for the analysis of wave beam 
transformations on transversely inhomogeneous structures. To implement compact localization in the 
spatial domain, it is proposed to use a system of non-intersecting rectangular windows. Problems of discrete 

realization of local plane wave expansion are analyzed. An algorithm for the numerical implementation of 
the localization of the plane wave expansion based on the quasisolution search method is proposed. Its 
advantage over the algorithm based on the discrete Fourier transform is demonstrated. The efficiency of its 

use has been demonstrated by the example of analyzing the wave beam reflection from the secondary 
aperture with transverse inhomogeneity. 
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1. Introduction 

Plane wave expansion (PWE) is widely used for considering wave propagation 
processes [1, 2]. The set of plane waves (PW) forms a convenient orthogonal system of 
functions with continuous spectrum in the wave number domain for the expansion of 
arbitrary field [1, 2]. In this case, the operational relations for determining the amplitudes of 
plane waves can be reduced to algebraic ones [2]. The relative simplicity of analyzing the 
behavior of each of the harmonic waves provides range of opportunities for analyzing 
complicated wave process. 

However, for some problems the disadvantage of the plane wave expansion is its 
globality, since it is determined by the field spatial distribution along the full real axis [3, 4]. 
On the other hand, the efficiency of this approach can be increased by going over to obtaining 
a spectral representation of the radiation field for a limited fragment of the aperture [5]. The 
localization of the expansion should allow extracting a set of dominant directions of wave 
propagation for each specific limited fragment of the field distribution under consideration. 

The problem of globality manifests itself especially clearly in the numerical 
implementation of the plane wave expansion for processing experimental data [4]. In this 
case, the plane wave spectrum (PWS) can be numerically obtained using a discrete Fourier 
transform (DFT), which involves the use of discrete samples of the field distribution, 
specified on a finite support [5]. The size of the used interval is determined by the degree of 
divergence of the wave beam under consideration and the distance to the plane in which the 
transverse distribution of the field is supposed to be restored [4]. At small sizes of the 
secondary aperture, the size of the interval for the DFT of spatial distribution must be chosen 
many times larger than the size of this aperture, especially in the case of an asymmetric phase 
distribution on it. The number of discrete samples increases in proportion to the size of the 
interval and can be significant, that complicates calculations. 

For implementation of the possibility of localization of features of the radiation field in 
several works, for example in [3, 6], it was proposed to use a window expansion on plane 
waves with a Gaussian function as the window. The main disadvantage of this approach is the 

non-orthogonality of the basis functions. Also, for the window expansion on plane waves, 
there is a problem of effective simultaneous localization in both spatial and spectrally 
conjugate field. Ways to overcome these problems and localization of the plane wave 
expansion using the method of quasisolution searching are discussed in this paper. 

2. Localization of plane wave expansion using a window 

The localization of the features of the transformed function can be realized by  introducing 
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a moving window function having a compact support into the Fourier transform. Use of 

the window function makes the result of the transformation dependent on the window 
coordinate. On this basis, in a number of works, for example, in [6], to localize the 
features of the radiation field u(x,z), it was proposed to use a window expansion on plane 
waves 
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When using the delta function as the window function w(x) = δ(x) for the utmost 

localization in the spatial domain, the local spectrum of the PW takes the form 
U(x,κ) = u(x) ⁠exp(jκx). Along the spectral coordinate κ, it is homogeneous, and its 
amplitude does not depend on κ, and along the spatial coordinate x, it is determined by 
the distribution u(x). The kind of the local PWS at utmost localization corresponds to the 
Huygens principle: each point of the wavefront is a local point source (a source of a local 
cylindrical wave). 

In another limiting case for the window function w(x) = exp(–jκx) which is 

homogeneous in the full domain of x and which provides the utmost localization in the 

spectral-conjugate region    ŵ     , the localization along x is lost for the local 

spectrum of PW 
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In this case for any x the local PWS is determined by the form of the global 
spectrum of PW. 

The Gabor transform with the Gaussian function as the window is widely used in the 

analysis of antenna radiation [7]. At the expense of choosing the Gaussian function as the 
window one, simultaneous localization of the basis function is achieved in both the 
spatial and spectral-conjugate domains, and the localization rectangle (Heisenberg 
rectangle) has the smallest area in comparison with other windows. The use of Gabor 
transform is also justified by the fact that the basis function has a physical interpretation 
in the form of Gaussian beam. The main disadvantage of the Gabor transform is the non-
orthogonality of the basis functions. 

Compact localization in the spatial domain is provided by a rectangular window, for 

which w(χ – x) = 0 for χ ∉ [x – w/2, x + w/2]. When using it, the local PWS will be 
defined as 
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where w is the width of the window. The system of non-intersecting rectangular windows 

with centers on the grid xi = iw, i ∊ (–∞,∞) is orthogonal, the window is specified on the 
finite support and the transition from local to global representation is implemented as 

simply as possible by summation [5]. In this case, the formed system of local spectra of 

plane waves  
 ,i i

U
  

 determines the initial global spectrum of plane waves U(κ) by its 

sum 
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where the local spectrum Ui(κ) is defined as 
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If, when considering transformations at the boundary of a transverse-inhomogeneous 
structure, it is assumed that the rate of change of properties along the boundary is 
insignificant and within the window [(i – 1/2) w, (i + 1/2) w] the local spectrum of 
secondary PW can be defined as Vi(κ) = Ri(κ)Ui(κ), then the transverse distribution of the 
secondary wave can be found using 
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This makes it possible to determine the radiation field of the secondary aperture formed 
by a section of finite length D of the boundary under consideration, using the summation 
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where I = D/w is the number of windows covering the secondary aperture, w is the 

window length. 

3. Discrete implementation of local expansion in terms of plane wave  

Under the numerical analysis of the radiation field, it is assumed that the discrete 
distribution of the sources u = {u0, u1,…, uN – 1} on the grid xn = x0 + nΔx is known. Here 
Δx = D/N is the step of spatial sampling, D is the length of the analyzed segment of the 
field distribution, n = 0,1,…,N – 1. In this case, the segment of localization of the 

spectrum of plane waves with the number of samples L ≤ N and length w = LΔx will be 
determined by the number i of its initial sample xi as ui = {ui, ui + 1,…, ui + L – 1}. 

If the analyzed sequence of spatial field samples is considered as a sequence 
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equal length, then in this case the local PWS can be determined using the discrete Fourier 

transform of the field distribution on the segment of the localization 
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where L = N/I = w/Δx is the number of samples in the window, Δx = D/N is the spatial 

sampling step, iL

mU is m-th component of the local PWS of the i-th part of the sequence. 

However, the discrete grid in the spectral-conjugated region κm = (m – N/2) 2π/D does not 
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correspond to the length-limited spatial grid of the window xiL + l = xiL + lD/N, whose 

length is w = D/I instead of the length D required for coincidence. Therefore, in order to 
use the DFT to calculate the local spectrum of plane waves, it is necessary either to 
switch to a more sparse grid κμ = (μI – N/2) 2π/D in the spectral-conjugate region, or 

padding the transformed subsequence iu  with the corresponding number of zeros at the 

beginning and at the end to apply the DFT to the full-length sequence. 

The problem in determining the local PWE using the DFT is that as the number of 
windows I increases to increase the detail, the window length w = D/I decreases, and the 
localization in the spectral-conjugate domain worsens by I times, which manifests itself 
in the corresponding spreading of the local spectrum (fig. 1-2). If the DFT is applied 
directly to the window samples without padding zeros, then with increasing number of 
windows I the window sample number L decreases. This leads to a decrease in the 
number of samples in the spectrum while its width remains unchanged and, accordingly, 

to a decrease in the number of undamped plane waves Lp = 2LΔx/λ + 1, which are part of 
the local spectrum of plane waves. With the reverse reconstruction of the secondary 
wave, this can lead to a decrease in the detail of the secondary local spectra. If the 
sampling step is very small and the condition Δx = λ/2L is satisfied for the selected 
partitioning of the analyzed interval into windows, then the local spectrum of plane waves 
will contain only one undamped component corresponding to the zero propagation angle. 
The condition D = Iλ/2 is similar when the window length w = LΔx is equal to half the 

wavelength λ. 

If propagation direction  maxarcsin i k  prevails in the area under consideration, 

then it is desirable that 
max

i

L    or 
max

iL x    are satisfied, where 
max

i  is the spatial 

period of the most significant change in this area. To overcome this problem, when 
obtaining the local PWS it is necessary to apply the DFT to the window samples with 
zeros appended. In this case, the number of undamped waves in the local spectrum 
increases I times up to Np = 2NΔx/λ + 1, which is typical for the PWS obtained over the 
full sequence u. 

Let us demonstrate the considered features as well as the dependence of the local 
PWS obtained with the DFT on the number of windows I using an example. Fig. 1 and 2 

demonstrate the LS for the field distribution created by the primary aperture a/ = 1 on 

the distance z/ = 5 at the secondary aperture D/ = 20 when N = 1000. In Fig. 1 for the 

case I = 8 (w/ = 2.5), the LS distinguish, in addition to the main one, several other 

directions of propagation, and in Fig. 2 for the case I = 20 (w/ = 1) the LS localize only 
one direction of propagation. The discretization error of the PWE implemented by the 
DFT is determined by the number of undamped plane waves in the PWS 

Np = 2NΔx/λ + 1. 
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Fig. 1. Local spectra of plane waves for I = 8 (w/λ = 2.5).  
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Fig. 2. Local spectra of plane waves for I = 20 (w/λ = 1). 

4. Using the concept of quasisolution to localize the plane wave expansion  

The local PWS for the rectangular window is determined by convolution with the 

spectral image of a rectangular window    ˆ sinc 2w w   , which significantly worsens 

localization in the spectral domain. To overcome this problem, the local spectrum of 
plane waves U(x,κ) will be defined as one of the solutions that provide the minimum of 
the functional  

        
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For some physical problems it is quite possible to confine oneself to the search for a 
quasisolution on a compact set by minimizing 
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where the local spectrum for the segment [x – w/2, x + w/2] is determined by the values 

 1 2, , ,x x x

x MU U UU  on discrete samples  1 2, , ,x x x

x M   κ . For the case of a 

discrete distribution of sources, the local spectrum of plane waves will be determined by 

the values  1 2, , ,i i i

i MU U UU  at discrete samples  1 2, , ,i i i

i M   κ  that provide the 

minimum of the function [8]: 
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In this case, the quasisolution searching method (QSM) is reduced to determining the 

parameters of exponential model    1 1, , , ,M M M M M

i i i i i i i Lu u u   u u U κ  with the 

components 
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approximating the field distribution for the i-th localization segment (here l = 0,1,…,L–1) 
and is a more efficient way to localize the spectrum than using the DFT. 
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The advantage of spectrum localization by the quasisolution searching method over 

the DFT-based method is that it gives not the spectrum on a uniform grid, but the 

amplitudes  1 2, , ,i i i

i MU U UU  of the main components of the plane wave spectrum 

and its locations  1 2, , ,i i i

i M   κ . The shorter the support length w on which the field 

distribution ui is approximated, the lower the model order M can be used. In the limit at 
M = 1, we pass to the geometric optics approximation. For the numerical realization of 

the QSM, methods of parametric spectral analysis can be used, which make it easy to 
implement the sliding version, when the area of consideration xi = {xi, xi + 1,…, xi + K – 1} 
moves sequentially along the analyzed distribution u to determine the dynamics of 
changes of the local PWS in the transverse direction of the radiation field. 

This advantage is clearly demonstrated by the results presented in fig. 3. It presents 
the values of QSM local estimates Ui and κi in the form of a discrete angular spectrum for 

the field distribution from the previous example and I = 100 (L = 10, w/ = 0.2). In this 

case, the model order M = 3 was used. The components of the spectrum are shown as an 
arrow diagram for each location of the window (since the distribution is symmetrical for 

better visualization only half of it is shown), the tilt of the components i

mU  is determined 

by the ratio i

m k , the components for different m differ in different shades of gray. 

 

Fig. 3. Estimates of the quasisolution searching method for I = 100 (w/λ = 0.2)  

The advantages of using the quasisolution searching method for the localization of 

the PWS are manifested when considering wave transformations that change the shape of 
the beam, for example, for reflection from the structure with the inhomogeneous angular 
spectrum of the reflection coefficient R(κ). The example of reconstructing the spatial 
distribution of the wave reflected from a segment of the interface between media with 

permittivity ε1 = 1 and ε2 = 2 (D/ = 10) using the fast Fourier transform (FFT) and the 

QSM is shown in fig. 4 (for comparison, the distribution of the reflected field from 
unlimited structure is shown with triangular markers). The distribution of the incident 
field was taken from the previous example with using the partition with the number of 
windows I = 50. The use of the QSM led to the coincidence of the reconstructed 
characteristic vM with the true v with graphic accuracy. The reconstruction error when 
using the FFT is due to spectrum "spreading" for harmonic components with spatial 

frequencies that do not coincide with the grid κm. 
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Fig. 4. Reconstruction of the reflected field from the local spectra of plane waves.  

The efficiency of the proposed approach was tested on the example of the 
transversely inhomogeneous structure as a layer with Gaussian change in the permittivity 

along the transverse coordinate      
22 /4

21 1
x D

x e


     , electrical thickness 

2 0.5d    and transverse size D/ = 10 for ε2 = 2. The result of reconstructing the 

distribution of the reflected field in the plane of the primary aperture is shown in fig. 5. 
For comparison, the line with triangular markers (with title "Global PWE") demonstrates 
the result of using the global PWE (by the values of ε averaged along x), which cannot 
consider the transverse inhomogeneity. 

 

Fig. 5. Distribution of the reflected field for the transversely inhomogeneous structure.  

5. Conclusion 

Using the DFT to compute the plane wave spectrum limits the locality of the 
analysis. More efficient for the localization of the PWS is the application of the 
quasisolution searching method. Its use when decreasing the window size provides an 

advantage over the DFT-based algorithm. The proposed approach has confirmed its 
effectiveness by the example of analyzing the reflection from the secondary aperture with 
the transverse inhomogeneity. 
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