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In quark­gluon plasma, the presence of the A0 (Polyakov loop (PL)) condensate results in the color
Z(3) symmetry breaking and the Furry theorem violation. Due to these peculiarities, new phenomena ­ the
induced color charges and other even­number diagram effects ­ are realized. Using the R̄ξ gauge, we ob­
tain the ξ­independent two­loop effective potentialW (Aclassical

0 ) expressed in terms of the PL. Its minimum
position detects the value of the condensate. We calculate the one­loop tadpole diagram with one gluon line
and the induced color charges Qind. Having these, we investigate the influence of the color charges on quark
propagation and derive and partially investigate the contribution of them into the Schwinger­Dyson equation
for quarks. It is found that the presence of Qind effectively increases the strength of the A0 potential acting
on colored particles in the plasma.
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1. Introduction
Quark­gluon plasma (QGP) is a new state of matter consisting of quarks and gluons lib­

erated form nuclei at high temperature due to asymptotic freedom of non­Abelian gauge fields.
QGP is one of the main object for researching nowadays. Despite high interest, many phenom­
ena are not investigated. The order parameter for the phase transition is the Polyakov loop (PL)
­ an integral variable ­ or related with it so­calledA0 condensate, which is a constant solution to
Yang­Mills field equation at finite temperature in the Matsubara imaginary time formalism. At
low temperature the PL andA0 equal zero. At high temperature they become nonzero signaling
a deconfinement phase transition (DPT).

There is a number of processes suppressed in vacuum by the Furry theorem. This theorem
states that due to C­parity conservation the Feynman diagrams with odd number of external
photon (gluon) lines mutually cancel (and thus give zero total contribution to any amplitude).
However in the plasma, C­parity is violated and the theorem ceases to be satisfied.

Fig. 1. Tadpole diagram

The generally recognized SU(3) global symmetry violation mechanism at high tempera­
tures is the spontaneous generation of the A0 condensate. This leads to the appearance of the
gluon magnetic mass and color charges.

The goal of the present paper is two­fold. First we calculate the value for theA0 condensate

3



V. Skalozub, A. Turinov

by using gauge invariant effective potential of order parameter derived recently [1]. Second, we
compute the ”tadpole” diagram (Fig. 1), and the induced color charge generated in plasma, and
also obtain the corrections to quark mass operator described by the Schwinger­Dyson equation.

2. A0 condensate
A0 condensate is a solution to field equations giving minimum to the effective potential

for the gluon fields at high temperatures. It belongs to the center of the gauge group A0 =
2πn
βgN , n ∈ ZN , n = 0, 1, . . . N − 1.

Actually, the value of theA0 has to be calculated from the full effective actionwith quantum
corrections taken into account. Difference between ⟨A0⟩ and 2πn

βgN points is due to a spontaneous
gauge symmetry violation [2]. The QCD Lagrangian in the relativistic background R̄ξ gauge
reads

L =
1

4
(Ga

µν)
2 +

1

2ξ
(DB

µQ
a
µ)

2 + χ̄DB
µDµχ

+ψ̄a(γµ + im)ψa + igψ̄aγµ(A
c
µ +Qc

µ)(t
c)abψ

b, (1)

Ga
µν = (DB

µ )
abQb

ν − (DB
ν )

abQb
µ − gfabcQb

µQ
c
ν ,

(DB
µ )

ab = δab∂µ + gfabcAc
µ,

(Dµ)
ab = δab∂µ + gfabc(Qc

µ +Ac
µ),

Ac
µ = δµ0(δ

c3A3
0 + δc8A8

0), (2)

where (tc)ab are SU(3) generators, Qa
µ is a quantized field, Aa

µ is classical background field,
fabc are structure constants, χ, χ̄ are ghost fields, ξ is gauge­fixing parameter, g is coupling
constant.

For further consideration it is convenient to introduce the charged basis of the gluon field

π±µ = 1√
2
(A1

µ ± iA2
µ), π0µ = A3

µ, ηµ = A8
µ,

K±
µ = 1√

2
(A4

µ ± iA5
µ), K̄±

µ = 1√
2
(A6

µ ± iA7
µ). (3)

The basis splits in three subgroups π±µ , π0µ; K±
µ , ηµ and K̄±

µ , ηµ which are important for
what follows. In it, in the momentum space, the background fields A3

0 and A8
0 are included

as constant shifts. Actual calculations of the two­loop effective potential at the A0,W (A0, ξ),
have been carried out by many authors and resulted in the ξ­dependent expression. Its minimum
position is also gauge­fixing dependent. So, the condensation phenomenon could be gauge non­
invariant and illusory. This point was discussed for many years in the literature. The gauge­
fixing independent effective potential, expressed in terms of the PL, was derived recently in [1],
[3] on the base of the Nielsen identity approach to the ξ­dependence of generating functionals
and particle spectra.

As it was discovered, the minimum value of the condensate (A0)min. is the same for the
gluon two­loop effective potential and the quark one both calculated separately. Moreover, to
obtain the effective potential expressed in terms of PL it is formally sufficient to substitute in
W (A0, ξ) the parameters A0 → APL

0 = Aclassical
0 , ξ → −1. Such way derived new expression

results in the classical effective potentialW (APL
0 ) for observable value of the condensate. More

information see in noted papers.

4



Induced color charge and quark propagation at Polyakov’s loop background

For completeness we adduce the final expression of the gluon contribution obtained after
these replacements [1]:

β4Wg = 4π2

3

[
− 1

30 +
∑3

i=1B4(ai)
]
+ g2

2

{∑3
i=1

[
B2

2(ai) + 2B2(0)B2(ai)
]

+B2(a1)B2(a2) +B2(a2)B2(a3) +B2(a3)B2(a1))

}
+2g2

3

{
B3(a1)[2B1(a1) +B1(a2)−B1(a3)] +

B3(a2)[2B1(a2) +B1(a1) +B1(a3)] +

B3(a3)[2B1(a3)−B1(a1) +B1(a2)]
}
, (4)

where the dimensionless parameters are introduced: x = β
πgA

3
0, y = β

πgA
8
0 and

a1 =
x

2
, a2 =

1

4
(x+

√
3y), a3 =

1

4
(−x+

√
3y). (5)

The first term of (4) in rectangular brackets describes one­loop contribution and others present
the two­loop one. The part standing with factor 2g2

3 comes from the ξ­dependent terms (see [1]).
Explicit expressions for Bernoulli’s polynomials Bi(x) definedmodulo 1 are

B1(x) = x− x

2|x|
, B2(x) = x2 − |x|+ 1

6
, (6)

B3(x) = x3 − 3

2

x3

|x|
+

1

2
x,

B4(x) = x4 − 2|x|3 + x2 − 1

30
.

That is, for x = Cβ/(2π), |x| ≤ 1, and therefore C, x are periodic. At x = 0 the B1(x) is
defined to be 0. Here and in what follows we denote x = xclassical = xPL, y = yclassical = yPL

are variables expressed in terms of Polyakov’s loops for A3
0 and A8

0.
The minimum position ofWg gives the condensate values in the plasma:

x =
g2

π2
, y = 0. (7)

The minimum value of the potential is

β4Wg|min = β4Wg(0)−
g4

2π2
, (8)

where the first term is the value at zero condensate. Hence we see that the condensate decreases
the potential and is energetically favorable. It is important that the A8

0 is absent at two­loop
level. In above formulas x and y are defined in the main topological sector:

0 ≤ a1 ≤ 1, 0 ≤ a2 ≤ 1, −1 ≤ a3 ≤ 0. (9)

Other values can be obtained bymeans rotation on the angle π
3 in the (x, y) plain. In what follows

we shall consider the main sector, only.

5



V. Skalozub, A. Turinov

As a final conclusion, we see that in QGP the gauge invariant condensate values of clas­
sical fields are (gA3

0)|min = g2

π T, y = 0. They are temperature dependent and will be assumed
in what follows at place of gA0.

3. Induced color charge
In this section, we calculate the induced color charge generated by the tadpole diagram of

Fig. 1. In charged basis, we have two components of the induced charge for the shiftsA3
0 andA8

0.
But accounting for the result (7) we calculate the contribution for the case (A0)

a
µ = A0δµ4δ

a3.
The explicit form in the Euclid space­time is Q3

4Q
3
ind, and we have

Q3
ind =

g

β

∑
p4

∫
d3p

(2π)3
Tr

[
λ3

2
γ4
p̂σγσ +m

p̂2 +m2

]
, (10)

where p̂ = (p4 = p4±A0,p), p4 = 2πT (l+1/2), l = 0,±1, . . . . The trace is calculated over
either space­time or color variables. Here also we noted as A0 the value A0 =

gA0

2 .
Calculating the traces over the space and the internal indexes we get,

Q3
ind =

4g

β

∫
d3p

(2π)3

∑
p4

(p4 +A0)

(p4 +A0)2 + ε2p
. (11)

To calculate the sum we use the following representation [7]

Q3
ind = 4g

∫
d3p

(2π)3
1

πi

∮
C
tan

βω

2

(ω +A0)

(ω +A0)2 + ε2p
dω. (12)

The integrand function has two imaginary poles of the first order. We use residues to find its
value.

The result, after transformation into spherical coordinates and angular integration, is

Q3
ind =

g sin (A0β)

π2

∫ ∞

0
p2dp

1

cosβA0 + coshβεp
. (13)

In what follows, we calculate the integral in the high­temperature limit T → ∞ ( β → 0).
In this case |p| ≫ m, so we use

εp =
√
p2 +m2 ≈ |p|+ 1

2

m2

|p|
. (14)

After integration over momentum we obtain

Q3
ind = gA0

[T 2

3
− m2

2π2
]
. (15)

As we see, the first term does not depend on mass and depends on temperature as ∼ T 2. The
second term depends on mass, only. At high­temperature, the first term is dominant and the
plasma acquires the spontaneous induced charge in the casem = 0, also. Remind also that here
A0 =

gA0

2 .
Thus, one of the consequences of the A0 condensate presence is the Z(3) symmetry and

the C­parity violation, which leads to the induction of color charge in the plasma.
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4. Quark self­energy
Now, let us calculate a quark self­energy in the presence of the A0 condensate. As it is

known, the particle spectra are determined by the poles of the Schwinger­Dyson equation

G−1 = p̂+m− Σ, (16)

where Σ is a polarization operator.
Let us calculate it in one­loop approximation. For this, in addition to the tadpole diagram,

we also need to account for the one shown in Fig. 2. That has been done in [5] for a chemical

Fig. 2. One­loop quark self­energy.

potential µ. We use that results in case N = 3 for QCD. Using the Feynman rules (in the
Feynman gauge (ξ = 1)) [7] we get

Σ(q) =
4g2

3β

∑
p4

∫
d3p

(2π)3
Dµν(p− q)γµG(p)Γν(p, q|p− q), (17)

where the bare functions have the form

Γ0
µ(p, q|p− q)

λ

2
= γµ

λ

2
, G0(p) =

−iγµp̂µ +m

p̂2 +m2
, D0

µν(p) =
δµν
p2
, (18)

where we omitted internal indexes.
We sum over the spinor indices and omit again internal ones to obtain

Σ(q) =
8g2

3β

∑
p4

∫
d3p

(2π)3
iγµp̂µ + 2m

(p̂2 +m2)(p− q)2
. (19)

After that we calculate the temperature sum

Σ(q) = −2g2

3πi

∫
d3p

(2π)3

∮
C
tan

βω

2

× i(ωγ4 + pq) + 2m

[(ω −A0)2 + ε2p][(ω − q4)2 + |p− q|2]
. (20)

We introduce the notation for Bose and Fermi occupation numbers

nBp =
1

eβ|p| − 1
, n±p

1

eβ(εp∓iA0) + 1
. (21)
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The result is

Σ(q) = −4g2

3

∫
d3p

(2π)3

×

{
πn+p
εp

γ4εp + iγp+ 2m

(q4 + iεp −A0)2 + |q− p|2

+
πnBp
|p|

[|p|+ i(A0 − q4)]γ4 + iγ(p− q)− 2m

(q4 −A0 + i|p|)2 + ε2p−q

−
πn−p
εp

γ4εp + iγp− 2m

(q4 + iεp +A0)2 + |q− p|2

−
πnBp
|p|

[|p| − i(A0 + q4)]γ4 + iγ(p− q)− 2m

(q4 +A0 + i|p|)2 + ε2p−q

}
. (22)

Then we introduce two new functions

Σ(q) = iγµKµ(q) +mZ(q), (23)

and calculate them separately. Using TrΣ(q)/4 = mZ(q) we find Z(q)

Z(q) = −4g2

3

∫
d3p

π3
nBp
|p|

[
1

(q4 −A0 + i|p|)2 + ε2p−q

− 1

(q4 +A0 + i|p|)2 + ε2p−q

]
. (24)

Similarly, for Trγ4Σ(q)/4 = iK4(q) we obtain the functionK4(q)

K4(q) = −mZ(q) + 2ig2

3

∫
d3p

π3

[
n+p

(q4 −A0 + i|p|)2 + |q− p|2

− [h.c(A0 → −A0)]
]
. (25)

And from TrγnΣ(q)/4 = iKn(q) we get the vectorKn(q) (n = 1, 2, 3)

Kn(q) =
2g2

3

∫
d3p

π3
pn
εp

[
n+p

(q4 −A0 + i|p|)2 + |q− p|2

− [h.c(A0 → −A0)]
]
. (26)

Unlike the calculations with chemical potential µ, the A0 is included as a real shift of the zero
momentum component. Therefore, it also changes the frequencies of modes and affects the
stability of spectra.

Next we consider the contribution of the induced color charge. For the tadpole diagram we
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have

Σtp(q) =
4g2

3β

∑
k4

∫
d3k

(2π)3

∑
p4

∫
d3p

(2π)3

×Dµν(k +m3
gl)γµ

λ3

2
Tr

[
λ3

2
G(p)Γν(p, q|p− q)

]
. (27)

Here, we introduces temperature Debye’s massm3
gl in gluon propagator. Due to equality of ini­

tial and final neutral gluon momenta q = q′ the transfer momentum k⃗ = 0. At finite temperature
the k4 and space k⃗ indexes are independent. The latter momentum is zero. In high temperature
limit k4 is also zero. So, after k­integration we get only the temperature mass contribution from
the gluon propagator. The second integral gives Q3

ind, which was calculated above. The result
is

Σtp =
16g2

3(m3
gl)

2
Q3

ind, (28)

where we omitted the color and γ4 matrixes and (m3
gl)

2 = Cg2T 2. Here, it enters the gluon
propagator as a phenomenological parameter. It can be calculated, in particular, from the effec­
tive potentialWg (4). We present this calculation below. Using Q3

ind expansion (15) we obtain
finally

Σtp =
gA0

C

[
16

9
− 8m2

3π2T 2

]
γ4
λ3

2
. (29)

As we see, the induced color charge gives correction to quark masses. The second term is next­
to­leading at high­temperature. Accounting for equations (16), (29) and (1), we conclude that
taking into consideration the induced charge results in the replacement the interaction potential
gA3

0 by gA3
0+

g2A3
0

C

[
8
9 − 4m2

3π2T 2

]
. This increases effectively the influence of theA0 condensate

on motion of quarks and gluons. In final expression we have substituted A0 → gA0

2 coming
from Q3

ind.

5. Debye’s mass of neutral gluons
Now, let us calculate Debye’s temperature mass of longitudinal neutral gluons (plasmons).

For that we use the definition
m2

D =
d2Wg(x)

d(A3
0)

2
|A3

0=0, (30)

and take the one loop contribution of (4), only. The result is (m3
gl)

2 = g2T 2, so that the factor
C = 1. This value coincides with the one calculated from the one­loop polarization operator of
neutral gluons.

6. Discussion
In this paper, we have considered the quark­gluon plasma at A0 background. We used the

charged basis, which admits to consider the A0 condensate as the constant shifts of the zero
momentum component. Since A8

0 = 0 in adopted approximation, we calculated the induced
color charge for the case (A0)

a
µ = (A0)µδ

a3. The gauge­fixing independent expression for A0

condensate was obtained and used in followed computations.
Then we calculated the proper diagram Fig. 2 in the presence of the A0 condensate and

the induced charge – the tadpole diagram. This diagram brings new corrections to quark self
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energy. It can be included in consideration by shifting the initial A0 potential, as it was shown
above. This effect increases the strength of the condensate and should be accounted for when
different problems in quark­gluon plasma are studied.
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