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The problem of constructing approximate solution methods and finding convenient recurrent
algorithms for the study of bound states of quantum mechanical equations is one of the central problems of
modern theoretical physics. In this paper an explicit semiclassical treatment of perturbation theory for non­
relativistic bound states based on h–­expansions and corresponding quantization conditions of one­dimensional
problems is developed. The wave functions are chosen in the same way as in the logarithmic perturbation
theory. Due to the introduction of new quantization conditions, this method made it possible to obtain
recurrent relations, which are convenient for finding the energy eigenvalues and wave functions of bound
states in the case when nodes of wave functions are taken into account. Avoiding the flaws of the standard
approach, the obtained recurrent relations have the same form both for the ground and perturbed states.
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1. Introduction
Since 1926, when Schrödinger suggested his well­known equation, and up to now, many

different methods of its solution have been developed, including those for finding the eigenstates
of various quantum mechanical systems. The existence of small class of problems that have
exact solutions gave impulse to the development of various theoretical approaches. The exact
solution of the Schrödinger equation, which determines the energy of stationary states of
systems, is possible only for some simple potential fields corresponding to idealized systems.
When studying real systems, one has to resort to approximatemethods of calculation eigenvalues
and eigenfunctions of Hamiltonian operators.

Currently, in non­relativistic quantum mechanics there are many solution methods for
problems that are not solved exactly [1,2]. The Rayleigh–Schrödinger perturbation theory is one
of the best known andwidely­accepted techniques [3]. For its application, it is necessary to know
the entire spectrum for an unperturbed problem. In this way, it is practically possible to find
only a first approximation to the exact solution of the problem. The practical implementation
of the Rayleigh–Schrödinger perturbation theory method is very limited, because even when
calculating the first order of approximation for the wave function (for the second order for
energy), an infinite sum appears in the recurrent relations, whichmakes it impossible to calculate
numerically the exact value.

Logarithmic perturbation theory is a technique of approximate calculation in theoretical
and mathematical physics [4, 5]. This theory is based on a method for solving quantum­
mechanical problems, which involves substituting the wave functions by their logarithmic
derivatives and going from the stationary Schrödinger equation to the nonlinear Riccati equation
[6]. In this connection, there is no need to know the spectrum for an unperturbed problem, but
the recurrent formulas have a convenient form only for the ground states.

The Wentzel–Kramers–Brillouin approximation has a sufficiently restricted application
area, being usually valid for strongly perturbed states, which correspond to rapidly oscillating
wave functions, although modifications of the WKB method have extended the potential of its
application [7]. To study lower states, it is necessary to utilize higher orders of quasi­classical
approximation, finding of which is associated with great difficulties. It should be noted that
quasi­classical approximation is developed in detail only for one­dimensional and spherically
symmetric cases.

11



A. Turinov

The 1/N ­expansion method is based on the consideration of the classical motion of a
particle located at the potential well bottom, formed by the effective potential of the radial
Schrödinger equation, with further accounting for quantum fluctuations and anharmonicity
effects as a perturbation series in small parameter, which determines the inverse value of the
space size [8,9]. The main advantage of this approach is that calculations in the case of ground
states are carried out according to simple recurrent relations [10–12].

Semiclassical treatment of logarithmic perturbation theory reduces the linear Schrödinger
equation to the nonlinear Riccati equation. But in contrast to the logarithmic perturbation
theory, solving the obtained Riccati equation is based on expanding energies and functions
F (x) = h–Ψ′(x)

Ψ(x) in powers of h–, hereafter Ψ(x) are wave functions. While using this method,
the difficulties of standard approach are eliminated, and obtained recurrent relations have a
simple form both for the ground and perturbed states and provide, in principle, the calculation
of perturbative corrections of arbitrary orders not only analytically, but also numerically.

2. Modification of semiclassical approach to perturbation theory
The purpose of this work is to investigate the possibilities of constructing a modified

semiclassical perturbation theory with the choice of a wave function in the same form as in
the standard logarithmic perturbation theory. This could make it possible to take into account
the nodes of the wave function easily and obtain recurrent relations which have a simple form
both for the ground and perturbed states.

For simplicity, we consider only the bound state problem for a one­dimensional anharmonic
oscillator.

Let our system be described by the Schrödinger equation

− h–2

2m
Ψ′′(x) + Ψ(x)V (x) = EΨ(x) (1)

where the potential­energy function V (x) has a simple minimum and can be given in the
following form

V (x) =
mω2x2

2
+

∞∑
i⩾1

fix
i+2 (2)

that fulfils the condition for minimum of the function (V ′(x) = 0, V ′′(x) > 0). If we perform
the rescaling of the coordinate x, x →

√
h–x, it becomes apparent that couplings fi are shared

in common with powers of Planck’s constant h–. Thereby, the perturbation series should also be
semiclassical h–­expansions. However, this statement, well known in theoretical physics, was
proved quite recently [13].

It was stated that energy eigenvalues under consideration should be clustered around the
potential minimum and represented as

E = h–ω
(
n+

1

2

)
+
∑
i⩾2

Ei(ω, n)h–i.

At the moment, there are only a few procedures for calculating the coefficients Ei(ω, n). They
include, in particular, applying the methods for equation comparing; analytical continuation to
the h–­plane; different approaches within the WKB approximation; quantization by methods of
classical mechanics [14,15], and, finally, expansion into h–1/2­series [16]. But all these methods
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have a variety of disadvantages.
In this work, we propose a new, simpler and clearer procedure. Let’s take the wave function

Ψ in the form
Ψ(x, h–) = Ω(x, h–)e

− 1

h–
∫
D(x)dx

. (3)

Finding the first and second derivatives of the wave function Ψ, we obtain

Ψ′(x, h–) = e
− 1

h–
∫
D(x)dx

(
Ω′(x, h–)− 1

h–
Ω(x, h–)D(x)

)
;

Ψ′′(x, h–) = e
− 1

h–
∫
D(x)dx

(
Ω′′(x, h–)− 2

h–
Ω′(x, h–)D(x) +

1

h–2
Ω(x, h–)D2(x)− 1

h–
Ω(x, h–)D′(x)

)
where sign ′ denotes derivative with respect to the variable x. Substituting these values into the
Schrödinger equation (1), we get the following differential equation

h–2

2m

(
Ω′′(x, h–)− 2

h–
Ω′(x, h–)D(x) +

1

h–2
Ω(x, h–)D2(x)− 1

h–
Ω(x, h–)D′(x)

)
=

= (V (x)− E)Ω(x, h–). (4)

Equating the coefficients at powers of h– equal to 0 and taking into account the fact that the
expansion of E in a series in h– can be written as

E = h–
∞∑
k=0

Ekh–k, (5)

and also owing to expansion of the functions Ω(x, h–), Ω′(x, h–), Ω′′(x, h–) in series in powers of
h–

Ω(x, h–) =
∞∑
k=0

Ωkh–k, Ω′(x, h–) =
∞∑
k=0

Ω′
kh
–k, Ω′′(x, h–) =

∞∑
k=0

Ω′′
kh
–k,

we get
− 1

2m
Ω(x, h–)D2(x) + V (x)Ω(x, h–) = 0,

which defines the integral function in the expression (3) as

D(x) = [2mV (x)]1/2 . (6)

After this substitution, the equation (4) takes the form

− h–

2m
Ω′′(x, h–) +

(
D(x)

m
+

D′(x)

2m

)
Ω′(x, h–) =

1

h–
EΩ(x, h–). (7)

In this case, it is convenient to put 2m = 1, as well as consider the formulas (5) and (6) and the
fact that D′(x) = V ′(x)

2
√

V (x)
. We rearrange the equation (7) to the following form

−h–
∞∑
k=0

Ω′′
kh
–k + 2

√
V (x)

∞∑
k=0

Ω′
kh
–k +

V ′(x)

2
√
V (x)

∞∑
k=0

Ωkh–k =
∞∑
k=0

h–k
k∑

i=0

EiΩk−i. (8)
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As a result, we get a system of n equations with 2n unknowns. Considering the equation
(8) for the case k = 0, we obtain the relation

4V (x)Ω′
0 +

(
V ′(x)− 2

√
V (x)E0

)
Ω0 = 0; (9)

for the case k ⩾ 1 we find an expression

4V (x)Ω′
k +

(
V ′(x)− 2

√
V (x)E0

)
Ωk − 2

√
V (x)Ω′′

k−1 = 2
√
V (x)

k∑
i=1

EiΩk−i. (10)

Considering that the wave function Ψ has n real zeros by oscillation theorem, then
according to the residue theorem, we may write∮

Γ

(
Ω′(x, h–)
Ω(x, h–)

+D(x)

)
dx = 2πin.

Since the function D(x) is regular in the region Γ, the last integral can be written as follows

1

2πi

∮
Γ

Ω′(x, h–)
Ω(x, h–)

dx =
1

2πi

∮
Γ

d

dx
lnΩ(x, h–)dx = n. (11)

Let’s expand the logarithm function into a Taylor series in powers of h–:

lnΩ(x, h–) = lnΩ+

∞∑
k=1

(
Ωk

Ω0
+O(k)

)
h–k,

where O(k) is a new function which contains the sum of ratios of the functions Ωk and Ω′
k.

Now we rewrite the integral (11) as∮
Γ

Ω′(x, h–)
Ω(x, h–)

dx =

∮
Γ

Ω′
0

Ω0
dx+

∮
Γ

∞∑
k=1

d

dx

(
Ωk

Ω0
+O(k)

)
h–kdx = 2πin. (12)

In the formula (12), we change from the integral around the loop to the residue. At the same
time, we equate the coefficients at the same powers of h– on the left and right sides of equality.
We obtain the expressions ∮

Γ

Ω′
0

Ω0
dx = 2πin ⇒ Res

(
Ω′
0

Ω0

)
= n, (13)

∮
Γ

d

dx

(
Ωk

Ω0
+O(k)

)
dx = 0 ⇒ Res

[
d

dx

(
Ωk

Ω0
+O(k)

)]
= 0, k ⩾ 1. (14)

3. Recurrent formula for energies
Due to the fact that Ω = Ω(k, h–) is a bivariate function, the coefficients of expansion of

this function into a series in powers of h– can be developed as a Laurent series in x.
We also take into account that the function O(k) changes into a certain Laurent series
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when replacing the functions Ωk with the corresponding Laurent series in powers of x, i. e. the
function O(k) can be written as:

O(k) =

∞∑
i=−∞

Oi(k)x
k.

After finding the x­derivative of the O(k) function, the series on the right­hand side loses the
term 1/x, that is, the O(k) function will not contribute to the residue. Considering this, the
formula (14) can be presented in the form

Res

[
d

dx

(
Ωk

Ω0

)]
= 0, k ⩾ 1. (15)

It follows from the formula (13) that the function Ω0 should be given by

Ω0 = xn
∞∑
i=0

Ω0
ix

i (16)

where Ω0
i are the coefficients of expansion of the function Ω0 in the power series in x. From the

formula (15), we obtain the general form of the function Ωk

Ωk = xn−2k
∞∑
i=0

Ωk
i x

i. (17)

For the convenience of further calculations, we introduce such a notation

µ =
√
V = x

∞∑
i=0

µix
i ⇒ µ′ =

∞∑
i=0

(i+ 1)µix
i. (18)

Finding the corresponding derivatives of the functions (16) and (17), we substitute them
into the set of equations (9­10), considering formula (18). As a result, we get

EkΩ
0
0 = b2kΩ

k−1
2k +

2k∑
j=0

(2a2k−j + 1 + j)µjΩ
k
2k−j−

−
k−1∑
p=1

EpΩ
k−p
2(k−p)

2k∑
i=0

biΩ
k−1
i +

i∑
j=0

(2ai−j + 1 + j)µjΩ
k
i−j

−
k−1∑
p=1

2k∑
i=p

EpΩ
k−p
i (19)

where ai = i+ n− 2k, bi = ai + 2.
4. Conclusions

Considering the convenient recurrent algorithm development for study of bound states
of quantum mechanical equations, we studied the possibility of constructing a modified
semiclassical perturbation theory with the choice of a wave function in the same form as in
the standard logarithmic perturbation theory. Within the framework of the modified logarithmic
perturbation theory, a new approach to the construction of recurrent relations was developed.
Based on h–­expansions, we obtained new convenient relations for solving the problem of the
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bound state for an anharmonic oscillator in terms of the one­dimensional Schrödinger equation.
The developed procedure completely eliminates the limitations of the standard approach.

The formulas take the same simple form both for the ground and perturbed states and provide,
in principle, the computation of arbitrary order perturbation corrections in analytical, as well as
in numerical form.
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