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A complex of issues related to the problem of proving the Boltzmann formula for the probability 

density (distribution) ( )w   of the values of a certain set of parameters   of an equilibrium system is 

investigated. The classical Boltzmann formula expresses this distribution through the non-equilibrium free 

energy of the system ( )F  , which depends on the mentioned parameters. This is possible because after the 

occurrence of fluctuations, the system finds itself in a non-equilibrium state, which evolves further to 

equilibrium. The specified parameters are chosen according to the problem under consideration. In the 

theory of phase transitions, they are called the order parameters. Questions under consideration include 

definition and construction of the free energy ( )F   of a non-equilibrium system and distribution ( )w   for 

it in the microscopic theory. The approaches of Landau, Leontovich, and Peletminsky are discussed. It is 

proposed to investigate the results for states in the vicinity of equilibrium. The leading ideas of the research 

are considering the non-equilibrium state as being realized in the presence of an appropriate external field, 

using the Gibbs formula for the non-equilibrium system entropy, and applying the Boltzmann formula as a 

definition of the free energy of the non-equilibrium system. The article is a continuation of the authors' 

works and sets the task of clarifying some of their statements as well as simplifying and clarifying the 

calculations. Among other things, the following are discussed: the formula for the expansion of the free 

energy of the system in powers of the field, the simplification of the distribution ( )w   calculation, the 

normalization of the approximate expressions for the distribution ( )w  , the possibilities of studying the 

free energy of the equilibrium system using our expression for the effective Landau Hamiltonian, the 

refinement of the calculation of the non-equilibrium free energy of a spatially inhomogeneous system, the 

investigation of new types of effective interactions with the Landau Hamiltonian. 

Keywords: equilibrium fluctuations, effective Hamiltonian, non-equilibrium free energy, the Boltzmann 
principle, phase transitions of the second kind, correlation functions, fluctuations close to equilibrium, long wave 

fluctuations. 
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1. Introduction 

Studying the effect of fluctuations on physical phenomena in macroscopic systems is a 
leading task of statistical physics [1, 2]. The magnitude of fluctuations is measured by 
deviations of the observed values from their average values. It is easiest to study fluctuations 
in equilibrium systems that are completely described by Gibbs distributions. However, the 
complexity of macroscopic systems makes this apparatus practically unusable. The 
specification of macroscopic conditions in which the system is investigated is not of great 
importance [3]. It is easiest to study systems with fixed temperatureT , volumeV  and number 

of particles N  (TVN -states), which are described by the canonical Gibbs distribution. From 

the physical point of view, TpN -states ( p is pressure) are closer to the experiment, but the 

Gibbs distribution required for this is more complex than the canonical one. 
The complexity of macroscopic systems suggests a reduced description of fluctuations 

in an equilibrium system with a relatively small number of parameters a  (a  is the number 

of parameters). In the theory of phase transitions of the II kind, which was largely developed 
by Landau [4] (see also [1]), the parameters are called order parameters (this term will be 

used further on). The order parameters a are chosen to describe the most significant degrees 

of freedom (collective motions) of the system for the problem under consideration. Interest in 
the study of equilibrium fluctuations increased significantly after the works by Onsager [5], 
who expressed the fruitful opinion that systems after the occurrence of fluctuations evolve as 
an ordinary non-equilibrium system. 
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In an equilibrium TVN -state, the equilibrium distribution function ( )w   of 

parameter values a  is defined through the canonical Gibbs distribution 

0
ˆ

0

F H

Tw e



 ,       0Sp 1w   (1) 

with the formulas 

0
ˆ( ) Sp ( )w w    ,          ( ) 1d w   ; 

ˆ ˆ( ) ( )a aa
      ,           aa

d d  . 
(2) 

Here and further, the caps denote the microscopic values of the corresponding physical 
quantities, Sp  is integration operator over the phase variables of the system together with 

the multipliers, which is used in the normalization condition (1) of the canonical 

distribution and in the formulas for averages with it of the type 0
ˆSpa w a . In 

applications, the Boltzmann formula  

( )

( )

F

Tw Ae




   (3) 

is considered valid for the distribution function ( )w   (see [1]). Here ( )F  is the free 

energy of a nonequilibrium state, which is described abbreviated by parameters a , A  is 

the normalization factor. It is clear that the validity of this formula depends critically on 
the expression for the free energy ( )F   and the result should be compared with the 

expression for the distribution function ( )w  , which is given by the microscopic theory 

on the basis of (2). A standard requirement for the nonequilibrium free energy is that it 
has a minimum at equilibrium 

0( )F F  ,    0 0( )F F  ;    0 0
ˆSpa aw   . (4) 

The first research of the concept of the free energy of a non-equilibrium state 
belongs to Leontovich [6, 7]. It was based on the idea that nonequilibrium state can be 

equilibrium one in the presence of a suitable external field ah . At the same time, the free 

energy of the non-equilibrium state was defined as the free energy of the equilibrium 
system in the mentioned field presence with the subsequent Legendre transformation 

giving the thermodynamic (TD) potential ( )LF  , for which the order parameters are own 

variables. At the same time, Leontovich proved that conditions (4) are fulfilled for the 

non-equilibrium potential ( )LF  . A little earlier [4] Landau built his theory of phase 

transitions of the II kind, based on some equilibrium thermodynamic potential dependent 

on order parameters a , the minimum of which describes the observed states. The 

authors tend to believe that Landau used the same potential ( )LF  , without giving any 

details. 
Another approach to the construction of TD potentials of non-equilibrium systems 

was proposed by Landau [1] who called such a potential the effective Hamiltonian, which 

will be denoted by ( )LH  . In general, both terms are considered synonymous in modern 

literature (see, for example, [3, 8]). The Landau definition is based on the Boltzmann 
formula with a normalization factor, which is expressed in terms of the total free energy 

of the equilibrium system 0F  
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0 ( )

( )
LF H

Tw e

 

   (5) 

where ( )w   is given by formula (2). The normalization condition for ( )w   makes it 

possible to study the free energy of the system using the formula 

0 ( )LF

T T

H

e d e
 



   (6) 

that is more realistic compared with the similar formula based on the canonical Gibbs 

distribution (1). The problem of calculating the effective Hamiltonian ( )LH   is currently 

not solved, and formula (5) is used with a phenomenological expression for it [1, 8, 9]. 
Another approach to the construction of TD potentials of non-equilibrium systems is 

proposed in [10, 11] (see also [12]). The papers are based on the method of reduced 
description of non-equilibrium processes. Hereby the entropy of a non-equilibrium 
system is first introduced with the Gibbs formula using to the distribution function of the 
system in the reduced description. 

The whole complex of issues raised above was discussed in our articles [13–15] and 
reports at several conferences with the aim of developing the microscopic theory. In 
particular, the relevance of such problem was noted in [16]. This paper aims to simplify 
the consideration of the mentioned works, to indicate the modern understanding of the 
discussed problems, and to present new results. 

The work is structured in this way. Section 2 discusses the free energy of non-
equilibrium systems. Section 2.1 discusses the microscopic implementation of the 

Landau–Leontovich definition of the free energy of a system. In Section 2.2, the 
definition of Landau–Leontovich is generalized to the case of spatially inhomogeneous 
systems. Section 3 discusses the problem of proving the Boltzmann formula for the 
distribution of equilibrium fluctuations. In clause 3.1, the distribution function of 
equilibrium fluctuations is calculated. Section 3.2 discusses the effective Landau 
Hamiltonian. In Section 3.3, the effective Hamiltonian of a subsystem of identical 
particles is considered as an application. Clause 3.4 derives the generalized Boltzmann 
formula. 

2. Free energy of non-equilibrium systems 

2.1. Microscopic implementation of the Landau–Leontovich definition 

The concept of non-equilibrium thermodynamic (TD) potentials belongs to the basic 
ideas of modern theoretical physics. Interest in such problems increased after Landau 
created his theory of phase transitions of the II kind [1]. However, it is striking that, while 
investigating the extreme properties of the nonequilibrium TD Gibbs potential, Landau 
did not even use the term "non-equilibrium". The reason for this is that nonequilibrium 

TD potentials coincide with some equilibrium ones. In this subsection, theTVN -states are 

considered described by the canonical Gibbs distribution (1) and the nonequilibrium free 

energy of the system is discussed. The nonequilibrium state of the system is described by 

some parameters a  (a  is number), which, based on the theory of phase transitions, will 

be called order parameters. Then the non-equilibrium free energy will besides { }a    

depend on the temperature T , volume V and number of particles N . Landau's theory is 

purely phenomenological, and therefore the task of building a microscopic theory in 

which this theory is embedded is an urgent task (see, for example, [16]). 
Further discussion of the non-equilibrium free energy construction procedure is 

carried out for a system subject to classical mechanics.  
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The basis of consideration is the canonical Gibbs distribution in the presence of an 

external field ah  

ˆ ˆ[ ]a aa
F H h

Tw e

  

 ,       Sp 1w ;               ˆSpa aw   . 
(7) 

This distribution according to Leontovich [6, 7] can be considered as non-equilibrium 
distribution function of the system, the state of which is described by the order 

parameters a  defined in (7). Hereby it is possible to assume that the system consists of 

two subsystems: one in equilibrium with temperature T  and one out of equilibrium, the 

state of which is described by the parameters a . The disequilibrium of the system is due 

to the fact that the order parameter is different from its equilibrium value 

0 0
ˆSpa a aw      (see [1, 4]). 

The external field ah  is included due to the mediocrity of the microscopic values ˆ
a  

of the parameters a . The basic TD relation for the free energy F  has the form 

a aa
dF SdT dh     

(8) 

and is built in the usual way on the basis of the 1st and 2nd laws of thermodynamics 
(TD), the definitions of internal E  and free F  energies, and the expression for the 
elementary work of the system R  when the field changes 

Q dE R   ,        Q TdS  ,      

ˆ ˆSp ( )a aa
E w H h   ,   F E TS  ,  a aa

R dh     
(9) 

(see, for example, [1]). Let's make the Legendre transformation, which will allow us to 

introduce a new TD potential LF  

L a aa
F F h   . (10) 

which we will call the Landau–Leontovich free energy. For LF  the parameters a  will be 

eigenvariables, since the basic relation of TD for LF has the form 

L a aa
dF SdT h d    . (11) 

According to Leontovich [6, 7], the function ( , )LF T   should be considered a non-

equilibrium free energy, since he proved 

0 0( , )LF T F  ,        0( , )LF T F  ;    0 ( , 0)a a T h    ,    0 ( , 0)F F T h  . (12) 

Leontovich based his definition on the fact that the Gibbs distribution in the presence of a 
corresponding field w  is simultaneously distribution function of a non-equilibrium state, 

the disequilibrium of which is connected with the fact that 0a a   . Note that the 

approach of our work [10] also leads to the definition of the non-equilibrium free energy 
according to (10), since 

LF E TS  ,      Sp lnS w w  ,  

where S  is the non-equilibrium Gibbs entropy of the system, which is described by the 

non-equilibrium distribution function w , the first formula is the usual free energy 

definition. 
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In fact, Landau used a TD potential of the type ( , )LF T   as a non-equilibrium TD 

potential. He certainly understood that the TD potential as a function of some parameters 

a  can be obtained by the approach just described. Moreover, the idea of modeling the 

system's disequilibrium with an external field has always been widespread. Our reasoning 
is to some extent confirmed by the consideration of the phase transition between para- 
and ferromagnets in Landau's book [17] and in the textbook [18], the author of which 
collaborated with Landau. Landau did not discuss the notion of non-equilibrium TD 

potential in his works and did not use the corresponding term, most likely because LF  is 

an equilibrium TD potential, after all. He also did not discuss, on the basis of statistical 

mechanics, the status of the potential LF  as a function of the parameters a , although he 

considered that the potential has minimum in equilibrium in the absence of real external 
field (not auxiliary field for non-equilibrium modeling). 

In fact, in his theory of phase transitions of the II kind, Landau defined the non-

equilibrium TD potential in the presence of an external field by the formula 

neq( , , ) ( , )L a aa
F T h F T h      (13) 

(here we are not talking about the field that simulates the imbalance of the system!). In it, 

the notation of the parameters has been changed from a  to a  in order to indicate that 

a  is an independent variable, the equilibrium value of which ( , )a T h  is sought from 

the extremum condition of neq ( , , )F T h  

neq ( , , )F T h F


  ,      
neq ( , , )

0
a

F T h



 



. (14) 

Here, the first formula is another entry of relation (10), and the second one is a 
consequence of equality 

( / )L a h aF h    , (15) 

which follows from (11). A certain summary related to the mentioned questions is 
summarized by Landau in the book [1], where formula (13) is also given. Weighing all 
the indicated circumstances, we believe that formula (13) can be called the Landau–
Leontovich nonequilibrium free energy definition. 

In his theory of phase transitions of the II kind, Landau [1, 4] postulated the 

expansion of the free energy ( , )LF T   into a series of powers of order parameters for 

temperatures close to the transition temperature, when these parameters are small. The 
coefficients of such series remained unknown functions of the temperatureT , the volume 
of the system V , and the number of particles N  in it. In our work [13], in perturbation 

theory, the Landau function ( , )LF T   near equilibrium was calculated when the value 

0a a a     is small, where 0a is the equilibrium value of the parameters a . It is 

clear that the Landau expansion is easy to find from our expansion, additionally 
considering the values to be small. 

Since the writing of the work [13], the authors have improved the understanding of 
the fundamental points of the theory and somewhat simplified the calculations. Their 
basis is an exact expression for the free energy in the presence of an external field 

0 0 ( )a aa
F F h T h    G ,           

1 1

12 ...

( 1)
ˆ ˆ( ) ... ...

! s s

s

s

a a a as
s a a

h h h
s T






    G  (16) 
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in the form of a series in powers of the field, given in [3]. Here 0a  and 
1

ˆ ˆ...
sa a    are 

the average values of the parameters a  and their correlation functions in the absence of 

the external field. The formula  

( / )a T aF h    , (17) 

which follows from (8), is used to calculate the function ( , )a T h  and its inverse 

( , )ah T  . As a result, we obtained the Landau free energy ( , )LF T   with accuracy up to 

contributions of the order 4  including [13], which gives microscopic expressions for 

the coefficients in the Landau expansion. Taking into account the dimensionality of the 
space of order parameters and symmetry of the system allows to simplify calculations and 
find further contributions. For example, when the order parameter is a three-dimensional 

vector and the system is isotropic, it is quite simple to calculate ( , )LF T   with accuracy 

up to contributions of the order 6 , which is discussed in some applications of Landau 

theory. A rather simple expression is obtained in the general theory in the Gaussian 
approximation [13] 

1 2 1 2

1 2

1 3
0

,

( , ) ( )
2

L a a a a

a a

T
F T F A O       ,        

1 2 1 2
ˆ ˆ

a a a aA      (18) 

where 0F  and 
1 2

ˆ ˆ
a a    are the free energy and the correlation function of the order 

parameters in the absence of the external field. 

2.2. Free energy of spatially inhomogeneous non-equilibrium systems 

Let us discuss how the developed theory is modified in a spatially inhomogeneous 

system, when the specified parameters a  and the field ah  depend on the coordinates and 

in the formulas of the general theory it is possible to put 

( )a i x   , ( )a ih h x ;      ( , )a i x        3... ...
a i V

d x  . (19) 

Here i  is the quantity number, x  is the radius vector (coordinates) of the space point 

(observation point), V  is the volume of the system ( x V ). After that, the consideration 

of spatially inhomogeneous states differs from the general theory only by a certain 
detailing of notations. In particular, the new number of the order parameters ( , )a i x  is 

the combination of the new number i  and the radius vector x . 

When considering spatially inhomogeneous states, formula (18) for the non-
equilibrium Landau free energy in the Gaussian approximation takes the form 

3 3 1 3
0 ,( , ) ( ) ( ) ( )

2
L ix i x i i

ii V V

T
F T F d x d x A x x O

  



        
 

(20) 

where the notation of the type 

1 ( , )a i x ,   2 ( , )a i x      
1 2 ,a a ix i xC C    (21) 

for the matrix is used. According to (18), (19), expression (21) for LF includes a matrix 

,
ˆ ˆ( ) ( )ix i x i iA x x       . (22) 
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Using coordinates x  as an order parameter number makes the theory mathematically 

complicated. For simplification, periodic boundary conditions can be imposed on the 

coordinate functions ( )i x , ( )ih x . In terms of the Fourier transform for the function 

f ( )x , on which the following conditions are imposed, we have 

1
f ( ) f ikx

k

k

x e
V

  ,      3f f ( ) ikx
k

V

d x x e  ;       

1/3

2 l
l

n
k

V


     ( 1,2,3l  ),    0, 1, 2,...ln    ;         3

3t-lim
... ...

(2 )k

V
d p


   . 

(23) 

We will assume that the equilibrium state of the system in the absence of the external 
field is spatially homogeneous and therefore 

ˆ ˆ ˆ ˆ( ) ( ) ( ) ( )i i i ix x x x x x             , (24) 

where x  is an arbitrary vector. Having introduced the Fourier components of the order 

parameter by formula (23), from (22) we obtain 

( )
, 2

1
ˆ ˆ ˆ ˆ( ) ( ) i k x k x

ix i x i i ik i k

kk

A x x e
V

 
    



        . (25) 

Comparing (24) with (25) shows that ˆ ˆ
ik i k     is different from zero only if k k    and 

because 

,
ˆ ˆ ( )ik i k ii k kA k         ,      ( )

, 2

1
( ) ik x x

ix i x ii

k

A A k e
V


    ,      ,

ˆ ˆ( )ii ik i kA k      ,      

( ) ( )ii i iA k A k   ,      * ( ) ( )ii iiA k A k   .  
(26) 

Note that all coordinate functions in the TD limit are different from 0  and  . When 

moving to the TD limit, the sums over the wave vectors are replaced by an integral 
proportional to the volume of the system V . Therefore, formula (26) shows that the 

matrix ,
ˆ ˆ( )ii ik i kA k       is proportional to the volume V  in the TD limit. A simple 

calculation based on (26) now shows that 

1 1 ( )
, ( ) ik x x

ix i x ii

k

A A k e
  

    (27) 

where 1( )iiA k
  is the matrix inverted to ( )iiA k . The obtained expression for the quantity 

1
,ix i xA
  allows to represent the Landau free energy (20) in the form 

1 3
0 ,( , ) ( ) ( )

2
L ii i k i k

ii k

T
F T F A k O

 


       . (28) 

The main problems of the theory of phase transitions are related to the long-wave 

behavior of the system, that is to ik , to the order parameters for small wave vectors k . 

For this purpose, it is sufficient to investigate the Landau free energy for non-zero values 

ik  only for small k . In this case, the function 1( )iiA k
  can be expanded into a series in 

powers of the vector k . The specific form of this expansion depends on the symmetry of 

the system. In the simplest case, we have 

1 2( ) 2 ( ) /ii iiA k a gk TV
     (29) 
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where the values a  and g  are some functions of the temperature T  that do not depend 

on the volume (see the discussion after (26)). Taking into account this result, formula (22) 
gives the well-known Landau expression for the free energy of the system in the spatially 
inhomogeneous case 

3 2
0

( ) ( )
( )

i i

L i

i i n nV

x x
F F d x a x g

x x

  
    

  
   (30) 

proposed by him for phenomenological reasons [1]. A similar expression for non-
equilibrium free energies was first introduced by Landau in [19]. Thus, we have 
discussed the basic concepts related constructions of non-equilibrium TD potentials. A 
generalization of the theory for the case of spatially inhomogeneous states has been 

developed. 

3. The proof problem for the Boltzmann formula 

3.1. Distribution function of equilibrium fluctuations 

The study of equilibrium fluctuations became an important task of modern statistical 
physics after the research by Onsager [5], who formulated a fruitful idea about 
equilibrium fluctuations as an important class of non-equilibrium states. The main tool of 
such research is Boltzmann's formula (3) for the distribution function ( )w   of the values 

of some parameters { }a    that describe the system state ( a  numbers the parameters). 

The list of such parameters is determined by the needs of the theory. Focusing on the 
needs of the theory of phase transitions of the II kind, we will call these parameters the 
order parameters. 

Since no matter in what macroscopic conditions the situation is studied [3], we will 
limit ourselves to the consideration of TVN -states with using the canonical Gibbs 

distribution (1). The standard definition of the distribution function of order parameters 
( )w   is given by formulas (2). The function ( )w   was found in our work [14], but later 

its approach was simplified. Our consideration begins with the expansion of expression 
(2) into the Fourier integral 

ˆ( )

0 0

1
ˆ( ) Sp ( ) Sp

(2 )

a a a
a

i u

s
w w du w e

 
     

   

0
ˆ ˆ

1
Sp

(2 )

a aaa a
a

H iu TF i u
T T

s
e due e

 
 




        ( aa
du du ). 

(31) 

This expression can be written using the canonical Gibbs distribution w  (7) in the 

presence of the external field ah  in terms of the free energy as a function of the field 

( )F h  

ˆ ˆ( )

Sp

a aa
H hF h

T Te e

  

   (32) 

that gives 
0 ( )

1
( )

(2 )

a a
a

F F iuTi u
T

s
w due e


 

  . (33) 

As a result, the equilibrium distribution of the order parameters takes its final form 
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( )1
( )

(2 )

a a
a

i u
iuT

s
w due e


 

 
G ,              0a a a    . (34) 

We are not aware of literary references to this result, that is, it was obtained by us in [14] 
for the first time. 

For small a , the distribution function can be represented in the standard 

exponential form, which can be compared with the Boltzmann formula (3). In particular, 
from (34) with accuracy up to the quadratic contributions, we approximately have 

3
0

,0

1 1
( ) exp ( )

2
a a ab a b

a a b

w A A D O
A

 
        

 
   (35) 

where denoted 

( )
0

1

(2 )

iuT

s
A due

 
G ,     

1 1

( )
... ...

(2 ) !n n

n
iuT

a a a as

i
A due u u

n


 
G , 

0 0

2 1
( )
2

ab a b abD A A A
A A

  . 

(36) 

Note that formula (35) expresses a rather complicated result, since the function ( )hG  

depends on all the correlation functions of order parameters. In addition, the function 
( )w   is normalized according to (35) only when taking into account all terms of the 

series in the exponent. In the Gaussian approximation, the distribution ( )w   should be 

written in the form 

2

,0

1 1
( ) exp

2
a a ab a b

a a b

w С A D
A

 
      

 
   (37) 

and the multiplier should be determined from the normalization condition. 

3.2. The effective Landau Hamiltonian 

To study the influence of equilibrium fluctuations on the thermodynamics of a 

system, Landau proposed [1] the definition of the free energy of non-equilibrium states of 

the system ( )LH   (the effective Hamiltonian of the system, as it was proposed to call it) 

by the Boltzmann formula (5) with a normalization factor, which is expressed through the 

total free energy of the equilibrium system 0F . This definition, taking into account 

expression (2) for the distribution of equilibrium values of the order parameters ( )w  , 

can be written in the form  

ˆ

ˆ) lnSp ( )

H

T
LH T e



     . (38) 

This function allows to calculate the free energy of the system 0F  using the formula 

( )

0 ln
LH

TF T d e




   , 
(39) 
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since accordingly (1) 

0
ˆ( )

Sp
LH H F

T T Td e e e


 

   .  

Unfortunately, at present, examples of calculating the effective Hamiltonian using 

formula (38) are unknown. Therefore, formula (39) is used only with the 

phenomenological expression for ( )LH   (see, for example, [2, 9, 11]). 

However, we have found an exact expression (34) for the function ( )w  , which 

gives the formula for the effective Hamiltonian ( )LH   

0( ) ln ( )LH F T w    , (40) 

which can be written in the form of expansion in powers of a . But expression (13) 

cannot be used directly to calculate the free energy of the system 0F  based on formula 

(39), because it contains 0F  and transforms (39) into an identity. At the same time, the 

approximate expression for ( )w   taking into account the first contributions 
1... na aA  gives 

an approximate expression for ( )LH  , which, based on formula (11), makes it possible to 

investigate the contribution of the quantities 
1... na aA  to the free energy 0F . This approach 

is better than using a phenomenological expression for ( )LH   because it expresses the 

result not through phenomenological coefficients, but through correlation functions 

1
ˆ ˆ...

na a   . In this sense, the contribution 02F  to the free energy 0F  from the 

Hamiltonian in the Gaussian approximation 2( )LH   should be estimated by the formula 

2 ( )

02 ln
LH

TF T d e




    (41) 

where 

2

,0

1 1
( )

2
L a a ab a b

a a b

H T A D
A


       

 
  , (42) 

since, respectively (35) and (40), 

3
0

,0

1 1
( ) ln ( )

2
L a a ab a b

a a b

H F T A A D O
A


          

 
  . (43) 

It should be noted that the obtained formulas (34), (35) for the distribution function ( )w   

and expressions (40), (43) for the effective Hamiltonian ( )LH   are not available in the 

literature known to us. 

3.3. The effective Hamiltonian of a subsystem of identical particles 

Let's apply the developed theory to the construction of the effective Landau 

Hamiltonian 1( ... )Ls sH x x  for s - particle subsystem of the system of N  identical point 
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particles, when the phase variables 1,..., sx x  of  particles play the role of parameters a . 

Denoting the probability density of these phase variables by 1( ... )s sw x x , definition (5) of 

the Hamiltonian 1( ... )Ls sH x x  can be written in the form 

0 1( ... )

1( ... )
Ls sF H x x

T
s sw x x e



 . (44) 

The function 1( ... )s sw x x  can be expressed through the s - particle distribution function 

1f ( ... )s sx x  introduced by Bogolyubov [2]. Using the details of the designations of the 

monograph [12] in terms of the canonical Gibbs distribution 1( ... )c
N Nw x x , we have 

1 1 1 1

1
f ( ... ) ... ( ... , ... )

( )!

c
s s s N N s s Nx x dx dx w x x x x

N s
 

  , 

0 1( ... )

1( ... )
N NF H x x

c T
N Nw x x e



 ,             1 1

1
... ( ... ) 1

!

c
N N Ndx dx w x x

N
  

(45) 

and therefore 

1 1

( )! !
( ... ) f ( ... )

!
s s s s

N s s
w x x x x

N


 ,      1 1

1
... ( ... ) 1

!
s s sdx dx w x x

s
  (46) 

( ah dx  is the product of the differentials of the phase variables of the a -particle,   is the 

number of degrees of freedom of a particle, h  is the Planck constant). 

Bogolyubov [2] constructed a perturbation theory for calculating the function 

1f ( ... )s sx x  in the approximation of the low density of the system /n N V  for a system 

of point identical particles, when in our formulas ( , )a a ax  x p , 3 3 3/a a adx d d h x p . In 

the thermodynamic limit, it was found that 

1 1

1

f ( ... ) ( ... ) ( )
sU

T
s s s s a

a s

x x e w


 

  x x p ,          

2

2
3/2

( )
(2 )

mT
n

w e
mT






p

p ; 

3 2
1 , 1 , 1
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a sa s

n d O n  

  

      x ; 

1

s ab

a b s

U
  

  ,     (| |)ab a b  x x ,    

(| |)

f 1
a b

T
ab e

 


 

x x

 

(47) 

where ( )r is the potential of pair interaction of particles. In this case, the effective 

Landau Hamiltonian is given by the formula 

0( ) ( ln )Ls s s sH F F H T      (48) 

where denoted  

2

1 2

a
s s

a s

H U
m 

 
p

,       
3 /2

0

(2 )
ln

!

s s

s

mT V
F T

s


   . (49) 
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For large s  value 0sF  is the free energy of the ideal gas of the particles of the system. 

Thus, the effective Landau Hamiltonian LsH of the low-density gas of s - particle system 

differs from the Hamiltonian function sH  of the s - particle system by the term ln sT   

of the first order of smallness. 
The expression (48) for the effective Hamiltonian is rather complicated since it 

contains contributions from multiparticle interactions. Similarly to (41), (42), it is 
possible to estimate the contribution of the three-particle effective interaction to the free 
energy, in particular. 

3.4. The generalized Boltzmann formula 

By definition, the Boltzmann formula expresses the distribution function of the order 
parameters of a system in equilibrium ( )w   through the free energy of a nonequilibrium 

state ( )F  , which occurs in fluctuation and is described by the same parameters. In this 

section, we set the problem of expressing the distribution function ( )w   in terms of the 

Landau free energy ( )LF  , which, according to the Landau–Leontovich definition, is the 

free energy of the nonequilibrium state under consideration. We take ( )w   in the form 

(33) 

0 ( )
1

( )
(2 )

a a
a

F F iuTi u
T

s
w due e


 

    

where ( )F h  is the free energy of the system in the external field ah  presence. 

According to (1.4), the Landau free energy ( )LF   as a function of order 

parameters is given by formula (10) 

( ) ( ( )) ( )L a aa
F F h h      , (50) 

in which ( )ah   are functions reversed to the average values ( )a h  of order 

parameters a  in the presence of the field ah . The last two formulas give the 

following expression for the distribution function ( )w   through the free energy of 

the non-equilibrium state ( )LF   

0

1
[ ( ( ))][ ( )]1

( )
(2 )

Laa a a
F F iuTi u iuT

T
s

w due e
   

  .  

Successive substitutions of variables when integrating /a au h iT , ( )a ah h  , 

simplify this expression and give formulas that can be called generalized 

Boltzmann formulas 

0

1 1
[ ( )] [ ( ( ))]1

( )
(2 )

a La a ah h F F h
T T

s
w dhe e

i

   
 

  , 

0

1 1
( )[ ] [ ( )]1

( )
(2 )

a La a ah F F
T T

s

h
w d e e

i

    
  

   

(51) 

where /h   is the corresponding Jacobi determinant. The closest to the standard 

form of the Boltzmann formula is the second expression (51). 
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Conclusions 

The article is a continuation of the works of the authors [13–15] and sets the task of 
clarifying some of their statements and simplifying and clarifying the calculations. It 
discusses equilibrium fluctuations and non-equilibrium states, in which the system is 
when exiting fluctuations. Fluctuations and non-equilibrium states are described reduced 

by a relatively small number of parameters a , the list of which is determined by the 

problem under consideration. In the most important application of the discussed scheme 
to the theory of phase transitions of the II kind, they are called order parameters. This 
work considers macroscopic equilibrium states described by the canonical Gibbs 
distribution and characterized by non-equilibrium free energy at the developed 

fluctuations. The paper discusses the entire complex of issues devoted to the proof and 
substantiation of Boltzmann's formula for the distribution ( )w   of reduced description 

parameters of the equilibrium system. We obtained an exact expression for this function, 
not found in the literature. At the same time, we have simplified the derivation of the final 
expression for the distribution compared to [14, 15] and correctly estimated its 
importance. 

The standard Boltzmann formula relates the distribution ( )w   to the free energy of 

the non-equilibrium state ( )F  , which occurs in an equilibrium fluctuation. Therefore, 

we pay a lot of attention to its construction. In the work, the free energy of the non-

equilibrium state according to Leontovich ( )LF   is called the free energy of the 

equilibrium state in the presence of an external field that simulates the non-equilibrium 
state of the system with subsequent Legendre transformation that makes the order 
parameters its own variables. Leontovich proposed this definition by proving that the 

function ( )LF   has a minimum in equilibrium. Our analysis showed that Landau also 

used some function as the free energy of the nonequilibrium state. Unlike Landau and 
Leontovich, we calculated the free energy around the equilibrium state of the system in 
microscopic theory. The calculations of our work [14] have been refined. Note that our 

results are more general since Landau studied the function ( )LF   only near the phase 

transition point where the order parameters are small. We also introduced the free energy 
of a non-equilibrium state in the presence of an external field (a similar formula was used 
by Landau) and indicated that it has an extremum in equilibrium (here we are not talking 
about an external field that simulates a non-equilibrium state). 

Among other results of our work related to the free energy of a non-equilibrium 
state, we note that Peletminsky's definition of the entropy of a non-equilibrium system 

confirms Leontovich's result. We have also developed a generalization of Leontovich's 
definition for spatially inhomogeneous states of the system when the order parameters 
depend on the coordinates. At the same time, an expression for non-equilibrium free 
energy with gradients of order parameters was obtained, which was first proposed by 
Landau for phenomenological reasons. Based on our exact expressions for the 

distribution ( )w   and non-equilibrium free energy ( )LF  , we obtained a generalized 

Boltzmann formula that does not have its standard structure, as expected. The quantities 

( )w  , ( )LF  , in our microscopic theory, are expressed through all the correlation 

functions of the order parameters. It can be shown that, taking into account only binary 
correlations, the Boltzmann formula is valid in its standard form [16]. 

The work also explores Landau's idea to determine the non-equilibrium free energy 

(the effective Hamiltonian of the system ( )LH  , according to Landau's terminology) 

directly from the Boltzmann formula. However, we did not manage to fully implement 
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Landau's definition. Only the exact expression is obtained 0( ) ln ( )LH F T w    , 

where 0F  is the equilibrium free energy of the system in the external field absence. This 

expression does not make it possible to calculate the free energy 0F  from the 

Hamiltonian ( )LH  , since the normalization condition will lead to the identity. 
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