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The self-organization process in a Dicke model is studied with taking into account electromagnetic 

field states. The interaction between two-level emitters provided by the field results in generating field 

waves of increasing amplitudes. The picture of superradiance development in a prolonged system can be 

described in terms of electromagnetic field in continuous medium formed by emitters. The generalized 

induction in the Dicke system is introduced on the basis of the material equation for charge current 

obtained using the Bogolyubov reduced description method. The dispersion equation for waves and its 

solutions are derived and analyzed. Non-singular expressions for material coefficients are proposed and 

used for calculating the wave characteristics. 
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1. Introduction 

The inexhaustible interest in the Dicke model is due to its place in the development of 
the methods of non-equilibrium statistical physics and the prospects of practical use. The 

possibility of obtaining coherent generation in exotic wavelength ranges and applying it for 
creating non-classic field states is very attractive. In this connection new aspects of the 
superfluorescence analysis such as process peculiarities in a prolonged system [1], resonator 
influence [2], and correlation parameters [3] cause attention of researchers. The similarity of 
processes in quantum computers [4] and Dicke two-level systems is a powerful stimulating 
factor for superradiance research. It should be noted that qubit behavior is described with the 
Bloch sphere like the quasispin evolution of the Dicke model [5]. Our investigations of the 

Dicke phenomenon based on the Bogolyubov reduced description method (RDM) allows not 
only to calculate the pulse delay time, but also to analyze field states. We use the ideas and 
notions of the electrodynamics of continuous media (EDCM), such as electric polarization 
and material equations. In our previous works [6-8] the set of differential equations for the 
macrostate evolution of a system of two-level emitters interacting via field was constructed. 
The equations for field variables including binary correlation functions make this set rather 
difficult since the spatial dispersion plays the key role in the medium under discussion. Thus, 
we come to the expedience of studying the wave processes in the medium of two-level 

emitters. This program was begun in our paper of 2013 [9]. Now a more consistent way of 
applying EDCM to the Dicke system is proposed with using the found expressions for 
material coefficients, wave propagation theory, and dispersion relations. 

The most general formulation of EDCM (the term “macroscopic electrodynamics” is 
also used), which is applicable for fields changing quickly in space and time, is based on 
introducing the generalized induction [10]. This vector physical value D containing 

information both about electric and magnetic polarization of the medium is defined by the 
relation 

4 ( )

t

t dt


    E ID  (1) 

where E denotes average microscopic electric field strength, and I is an average electric 

current density formed by both free and bounded charge carriers of the matter (external 
charges must be taken into account separately). Hereafter vectors are in bold. It supposed that 
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at t   matter and field are in equilibrium and external electromagnetic field was 

absent [11]. (1) leads to the following expression including the current density of matter 
charge carriers at a time moment t: 

4
t t

 
 

 
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E
I

D
 (2) 

 
In terms of D, Maxwell equations in a medium without external charges take the form: 
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(3) 

Next, the dielectric permittivity tensor connecting D and E of the medium is traditionally 

introduced and harmonic plane waves are considered, i.e., all fields conceivably depend 

on time and coordinates through the factor 
 i t

e
 k x

 [10]. Thus, the set of algebraic 

equations for field Fourier components providing the condition for wave mode existence 
in the medium is obtained, it is called the dispersion equation. This convenient way of 

constructing the wave theory in media can be modified by using the connection between 
D and E based on Eq. 2 including current density. 

In [7], just the required expression for current density has been derived in the RDM 

framework. The material equation for quasiequilibrium medium of the Dicke model is 

( ) [ ( , ( )) ( ) ( , ( )) ( )]I x x x x x E x x x x Z xd c            ,      ( Z B ). (4) 

The view of (4) evidences the spatial dispersion in the considered medium. The main 
conditions for obtaining such expression are using the Gibbs distribution for averaging, 
that is a local temperature existing, and substance properties depending on the local 
energy density. Integration is performed over the whole system volume, the influence of 

boarders is negligible, the expression for I is valid in the 2nd order of the perturbation 

theory in terms of a small parameter d (atom dipole moment). For such reasons E
t  

(transversal field) is replaced by E  (complete field) in the equation. The spatial form of 
the material equation is necessary for our attempts of the numerical investigation of the 

superradiance process with considering field fluctuations [12]. But the problem of wave 
propagation requires the primary form of this equation in terms of Fourier components 

1
( ) [ ( , ( )) ( ) ( , ( )) ( )]

k

xI x k x E k k x Z kie c
V

      k . (5) 

We denote the Fourier transforms by the same letters but indicate the argument. The 
Fourier images of material coefficients in the assumption of the random orientation of 
emitting atoms were calculated in [7] in the assumption of the same frequency ω of all 
emitters: 

( , ) ( )ks     k ,   
2 2

2 1
( , ) P   

  
k

k

s
,   k ck  ,   

2

2

2

3

d
s

 
 . (6) 

The fact that the coefficients are proportional to the energy density of the emitter 
subsystem allows considering the relation 

( ) ( , ) ( ) ( , ) ( )c     I k k E k k Z k  (7) 
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as current density Fourier image in the case of a uniform medium. In another case a more 

complicated connection must be applied: 

 - -

1
( ) ( , ) ( ) ( , ) ( )c

V
 



        k k k k

k

I k k E k k Z k  (8) 

where - k k  is the Fourier transform of   x . Our consideration will be restricted with a 

homogeneous medium, which is an adequate model for the early stages of Dicke system 
evolution at an appropriate way of initial state preparation. 

3. Time dispersion in material coefficients. Problem of singularity 

Pay attention that Eq. 4 does not show an explicit form of the time dispersion. The 
RDM provides the evolution equations with simultaneous values of physical quantities, 
and this is one of its advantages. Nevertheless, the influence of the previous time 
moments is taken into account in (4) due to the way of obtaining the coefficients 

( , ) and ( , )   k k . Indeed, expressions for calculating physical values at an arbitrary 

time (usually 0t   is taken) contain integrals over time from   to 0 [7]. The integrals 

exist after the thermodynamic limit in the class of generalized functions, therefore 
singular formulas (6) are obtained. In some sense, the coefficient ( , ) k  describes the 

time dispersion because of the relation 1 t

tc Z E  confirming the influence of the time 

derivative of electrical field strength. 
The simple form of (6) is complicated by the singular functions. Obviously, due to 

the presence of factors d2 in expressions (6) we could speak about weak medium response 

to both electric and magnetic external influence. But response singularity at k   

shows the great particularity of Dicke model and expedience of special measures for 

obtaining physical results since emitter-field interaction does not suppose the 
mathematical equality of external signal and  .The known way of overcoming the 

problem is non-uniform Lorentz broadening accounting [5]. A regular description of this 
technique is given in [8]. 

The emitter frequencies are supposed to be distributed near the fixed value 0  (that 

is a table value for the operation transition of Dicke emitters) with probability density 

 w  . Calculations are performed for an arbitrary  , then the result is averaged with 

the weight function  w  . For many problems, it is sufficient to consider the limit at 

0  and use the relation    0 0
0

lim w


    . Presumably, integrals with 

singular functions can be calculated, maybe, in Cauchy sense. But dealing with the wave 

nature, one must work with the function  w   itself. Really α is a value determined by 

the atom-field interaction character. In our model the non-uniform broadening is absent, 
but the natural emitter line width plays the same role. The parameter α can be calculated 
proceeding from the operation level lifetime. So, the material coefficients (6) should be 

replaced by expressions  

0

( , ) ( ) ( )ks d w



       k ,      
2 2

0

2 1
( , ) ( )P

k

s
d w



     
  k  (9) 

where in accordance with [5] 

  2 2
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
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0

( ) 1d w



   . (10) 
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Note, that 1
0/ 2 arctg( / )c         for small  . 

It can be proven that 
2 2

0

P 0
k

d





   and therefore the second integral in (9) exists 

in the usual sense 

 2 2 2 2 2 2
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( ) ( ) ( )1
( )P =P k

k

k k k

w w w
d w d d S

  

  
 

   
      

        .  

So, further the material coefficients should be used in the form 

( , ) ( )ksw    k ,      
2

( , ) ( )k

s
S    


k  (11) 

and from physical point of view for 0k ck    . 

4. Dispersion relation and its solutions 

Since the second of equations (3) includes the time derivative of D, (2) provides the 

necessary transition to vectors E and I. Assuming the dependence of the type 
( )( , ) i tt e   kx

E x E  for normal waves [10] leads the set of equations for Fourier 

transforms 

0 k D ,        
c


  k B D , 

0 k B ,       
c


 k E B . 

(12) 

Pay attention that in further we must differ the cyclic frequency ω of the mode we are 

looking for and the value k  connected with the wave vector k used in (11) and (12). If 

we put in the relation (7) ( )( ) i te   kx
E k E  and analogous for Z, both the necessary form 

of coordinate-time dependence for field variables and the right view of ( , )tI x  will be 

secured. Thus, the condition ( ) const   x  should be accepted. Obviously, dealing 

with non-equilibrium processes contradicts the assumption of spatial and time 
homogeneity, but in Dicke systems during the process of correlation development the 
emitter subsystem state (in terms of energy density) remains nearly unchanged for a long 
time. This circumstance greatly simplifies the numerical simulation of the early stages of 
superradiance process [12]. So, such assumption can be used in the study of wave 

processes in a Dicke model at the superradiant process beginning. 
Substituting the described current representation into the Fourier transformed 

formula (2) gives the relation 

   4 ( , ) 4 ( , )i c          k E k k BD  (13) 

where material coefficients are taken in the form (11). Next, as usually, we reduce the set 

(12) to the equation for electrical field E . According to (12), the relation 

c


  k BD   

is true and so formula (13) leads to the connection 

( , )u
c


   k B k E  (14) 
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Where 

11 4 ( , )
( , )

1 4 ( , )

i
u

    
 

  

k
k

k
. (15) 

The last equation of (12) gives 

2( ) [ ( ) ]
c c

k     
 

k B k k E k k E E= .  

Obviously, the final view of the equation for E  is 

 
2

2

2
( , ) 0k u

c


    k k E E k E . (16) 

For the cartesian components of E , this equation leads to the set of homogeneous 
linear equations 

2
2

2
( , ) 0nl n l lk u k k E

c

  
      

  
k  (17) 

(here , 1, 2, 3n l   and Einstein’s rule is used). The necessary condition of the own 

electromagnetic wave existence is zero value of its determinant: 

2
2

2
( , ) 0nl n lk u k k

c

 
     

 
k . (18) 

The obtained relation (18) is a dispersion equation for electromagnetic waves in Dicke 

system that allows establishing the connection between wave vector and frequency, i.e., 

the dispersion law   k . In our isotropic case ( , ) ( , )u u k  k  and the vector E  

structure is defined only by the vector k  and it has the longitudinal l
E  and transverse t

E  

components l t E E E . Substituting l t E E E  in (17) gives 

2 2
2

2 2
( , ) ( , ) 0l tu k k u k

c c

  
      

 
E E  (19) 

and therefore 

2

2
( , ) 0lu k

c


  E ,      

2
2

2
( , ) 0tk u k

c

 
   

 
E  (20) 

because vectors l
E , t

E  are linear independent. For longitudinal field 0l E , hence the 

relation 

( , ) 0u k    (21) 

must be satisfied. For transverse field 0t E  and the equality 
2

2

2
( , ) 0k u k

c


    (22) 
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is valid. The last two equations define dispersion laws ( )k i      if the 

corresponding waves are possible. 

In view of small parameter squared d2 presence in material coefficients (11), 

( , ), ( , )k k     are small, then ( , ) 1u k    and the medium of emitters almost does not 

differ from vacuum. At the same time in the k range of interest, where 0 /k c  , material 

coefficients take large values due to the    kw w ck    behavior (see (11), (28)). 

For longitudinal field, according to (15), (21), 

0, 4 ( , ) 4 ( )k s w ck
          , (23) 

i.e., for all k the imaginary part 0  . Thus, longitudinal waves propagation is 

impossible, but the positive sign of   shows that field energy grows rapidly when ck is 

close to 0 . The considered material equations were derived with perturbation theory; 

hence they are valid for small fields. Nevertheless, our analysis is applicable at least at the 
beginning of the Dicke process when state changes touch on field correlations at the 
nearly stable energy of the emitter subsystem. 

For transverse waves, (22) results in the relations (see (11) and (15)) 

 2 2 2 2 2

1

1 8 ( )1 8 ( )

1 4 ( ) 4 ( )

sS cksS ck
c k c k

isw ck isw ck





 

 
  

    
, 

   2 24 ( ) 1 8 ( )isw ck c k sS ck      , 

2 2 2 2 24 ( ) 8 ( ) 0isw ck sc k S ck c k       , 
2 2 2 2 2 22 4 ( ) 4 ( ) 8 ( ) 0i isw ck sw ck sc k S ck c k  
                  

 

The set of two equations for   and   is obtained: 

2 2 2 2 2 24 ( ) 8 ( ) 0sw ck sc k S ck c k 
          , 

2 ( ) 0sw ck
        . 

 

From the 2nd equation at once 

2 ( )sw ck
  . (24) 

Inequality 0   evidences energy growth for transverse modes, especially fast for the 

indicated area of interest. Next, from the 1st equation 

 2 2 2 2 2 21 8 ( ) 4 ( )c k sS ck s w ck 
     . (25) 

It is necessary to have an estimate for ( )S ck . The explicit view of the weight 

function (10) should be used. Thus,  

     
2 2 22 2 2

0 0 0

1 1
( )

c
S ck d

ck ck






 
    

       
  

 
 

0 0

0 0

2( ) ( ) 2
( ) ( ) 1

ckw ck w ck
d w d w

c ck c ck

 

 
 

 

   
            

  . 

(26) 

The last integral can be calculated exactly using formulas for rational function 
integration. The final expression is based on the formula 2.18 (4) from [13]: 
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(27) 

 

 2 2
00 0

2 22 2

0
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S ck w ck

c k c cck
 

 

 
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     
            

. (28) 

Thus, (25) gives the exact expression for wave frequency 
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
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   at 0    

(29) 

For obtaining the group velocity of the considered waves the derivative 
d

dk


 must be 

calculated. The derivative of the accepted weight function is  

0

22 2
2 2

0
0

( ) 1
2

( ) ( )

dw ck ckd
c c c

dk dk ck ck


 

  
     

       

. (30) 

Basing on (30), the necessary derivative has been obtained. It proves to be too 

cumbersome. In the range of resonant waves when 0ck   , the relations between 

different small parameters of the theory , s  see (6)) and 0g ck   should be 

considered. 
The medium influence on wave propagation is maximal near the maximum point of 

the weight function. For the group velocity 
d

dk


 at 0k

c


  calculations give the value 

1/2
2

2 2 2

0

2 4
1 1

s s
c



  
   
    

. The result obtained in the approximation 0    seems to be 

physically substantiated because the velocity decrease is proportional to the small 
parameter s and becomes large when a narrow distribution is accepted. The dimensionless 

quantity 
0

s
 

 
 appears as a small parameter in a more detailed study that will be 

discussed in a subsequent paper. For   the result is obvious from (23), (24): in any case 

0  , wave enhancement in the active medium takes place and this effect is 

proportional to ( )w ck  and s. 

5. Conclusions 

In the paper notions of the electrodynamics of continuous medium are applied to the 
Dicke system of two-level emitters interacting via field. The generalized induction is 
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constructed using the material equation for current density. Maxwell equations for 

Fourier components are obtained basing on such material equation. They lead to the 
dispersion relations for transverse and longitudinal fields. The wave propagation problem 
requires considering the non-singular material coefficients for taking into account non-
resonant interaction. Longitudinal waves are impossible in a superradiant system. For 
transverse waves, the dispersion law is established in the form of expressions for the real 
and imaginary parts of complex frequency corresponding to a certain wave vector. The 
medium influence is essential for modes, which are close to resonance with emitters. The 

increment value is proportional to the interaction intensity and emitter frequency 
distribution function. The group velocity is analyzed in brief. 
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