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In SU(N) gluodynamics, at high temperature the spontaneous magnetization, b(T ) ̸= 0, of a vac
uum happens in the approximation to the effective potential  the tree plus the oneloop, plus daisy dia
grams, W (b) = b2

2g2
+ W (1)(b) + W daisy(b). At the same time, in twoloop approximation, W (A0) =

W (1)(A0) + W (2)(A0), other classical field  A0 condensate directly related to the Polyakov loop  is also
spontaneously generated. To investigate the creation of the condensates together, the two loop effective po
tential of both fields should be calculated. This program was realized recently for SU(2) in [1]. However, the
generation of magnetic field in twoloop order was not studied in detail. In the present paper, we compute the
value of chromomagnetic field b(T ) for latter case. Then, considering the spectrum of color charged gluons at
the background of both condensates, we conclude that the A0 stabilizes the magnetized vacuum at high tem
perature. This is in agreement with the lattice simulations carried out already and clarifies the mechanism of
the magnetic field stabilization.
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1. Introduction
Deconfinement phase transition (DPT) as well as the properties of quarkgluon plasma

(QGP) are widely investigated for many years. Most results have been obtained in the lattice
simulations because of a large coupling value g ≥ 1 at the phase transition temperature Tc. But
at high temperatures due to asymptotic freedom the analytic methods are also reliable. They give
a possibility for investigation various phenomena in the plasma. Among them is the creation of
gauge field condensates described by the classical solutions to field equations without sources.
Only such type fields could appears spontaneously. The well known ones are the socalled A0

condensate, which is algebraically related to the Polyakov loop, and chromomagnetic field b(T ),
which is the Savvidy vacuum state at high temperature. These condensates result in numerous
effects and could serve as the signals of the DPT. TheA0 condensation has been investigated by
different methods. For a recent work see [4] and references therein.

Although these condensates are the consequences of asymptotic freedom, they are gener
ated at different orders in coupling constant or the number of loops for the effective potential.
This is the reason why they have different temperature dependencies and could play different
roles. For example,A0 is generated in g4 order of coupling constant and determined by the ratio
of two and oneloop contributions to W (A0). So it has the g2 order. The field b(T ) is gener
ated in oneloop plus daisy approximation and also has the order g2 in coupling constant. But
it has other temperature dependence due to a treelevel contribution of classical field equations.
This is important at high temperature. All mentioned features require special comprehensive
considerations.

The fields investigated below are an important topic towards a theory of confinement. The
A0background is relevant because at finite temperature such field cannot be gauged away and
is intensively investigated beginning with [2]. In the early 90ies, twoloop contributions were
calculated in QCD and with these, the effective potential has nontrivial minimums and related
condensate fields (see, for instance, [3]). They form a hexagonal structure in the plane of the
relevant color components A3

0 and A8
0 of the background field.

A different kind of background is the chromomagnetic one. More details about this field
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and the ways of its stabilization at finite temperature can be found, in particular, in [8]. The
magnetization is also resulted from the minimum of the effective potential which is stable in the
approximation of one loop plus daisies. A common generation of both fields was studied in [1].
Here, new integral representation, which generalized the known integral representation for the
Bernoulli polynomials, was introduced and admitted introducing either A0 or b fields up to two
loop order. Within this representation, in particular, the known results for separate generation of
the fields have been reproduced. However, the spontaneous generation of chromomagnetic field
up to twoloop order was not investigated in detail. Therefore, the mechanism of the vacuum
stabilization remained not clarified. This is the problem which is investigated in the present
paper. This point is of grate importance because in the lattice calculations accounting for both
backgrounds [11] it was observed that in the presence of a constant color magnetic field the
Polyakov loop acquires a nontrivial spatial structure along the direction of the field. More
interesting, in [12] a common spontaneous generation of both fields was detected.

As a step towards the simultaneous generation of both background fields in a perturbation
approach, we consider both these fields on the twoloop level. More specifically, we calculate
the effective potential as a function of both parameters,A0, and b, in SU(2) gluodynamics. The
integral expressions for the effective potential of theA0 are generalized to include the magnetic
background in twoloop order. Also, we consider the limiting cases A0 = 0 and b ̸= 0 and find,
for instance, the magnetic condensate in twoloop order, which was also considered in [1], [8]
but using other approaches and in not wide temperature interval. Note that the spontaneous gen
eration of a background field is meant in the sense, that for the corresponding field the effective
action has a minimum below zero, which is energetically favorable.

The paper is organized as follows. In next section 2, we adduce the representation of the
effective potential from [1] and note the main properties of it. In section 3, we investigate the
minima of the effective potential in the pure magnetic case and high temperature. In section 4,
we consider the case of pure A0 contribution and compare the energy of the A0 and b conden
sates accounting the one and twoloop contributions for magnetic condensate. In section 5, the
conditions for stabilization of the charged gluon spectrum with accounting for both condensates
are investigated. The last section 6 is devoted to discussion.
Throughout the paper we use natural units with h̄ = c = kB = 1.

2. Representation for the effective potential
In the case of SU(2), the effective potential in the background Rξ gauge reads [1]:

W
SU(2)
gl = B4(0, 0) + 2B4 (a, b) (1)

+ 2g2
[
B2 (a, b)

2 + 2B2 (0, b)B2 (a, b)
]
− 4g2(1− ξ)B3 (a, b)B1 (a, b)

with the notation

a =
x

2
=

gA0

2πT
, b = gH3. (2)
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Since we work at finite temperature,Wgl is equivalent to the free energy. The functionsBn(a, b)
are defined by

B4(a, b) = T
∑
ℓ

∫
dk3
2π

b

4π

∑
n,σ

ln
(
(2πT (ℓ+ a))2 + k23 + b(2n+ 1 + σ − i0)

)
, (3)

B3(a, b) = T
∑
ℓ

∫
dk3
2π

b

4π

∑
n,σ

ℓ+ a

(2πT (ℓ+ a))2 + k23 + b(2n+ 1 + σ − i0)

B2(a, b) = T
∑
ℓ

∫
dk3
2π

b

4π

∑
n,σ

1

(2πT (ℓ+ a))2 + k23 + b(2n+ 1 + σ − i0)
,

B1(a, b) = T
∑
ℓ

∫
dk3
2π

b

4π

∑
n,σ

ℓ+ a(
(2πT (ℓ+ a))2 + k23 + b(2n+ 1 + σ − i0)

)2 .
Here, ξ is gauge fixing parameter, the summations run n = 0, 1, . . . , σ = ±2 and ℓ runs over all
integers. The ′ − i0′prescription defines the sign of the imaginary part for the tachyonic mode.
These formulas and eq. (1) are the generalization of the corresponding twoloop expressions
in [13], eqs. (3.8) and (A.2)(A.5), [14], eq. (14), [15], eq. (4), and also [16], eq. (4), to the
inclusion of the magnetic field. Note a ”” sign in (5)). Below we use also the relations

B3(a, b) =
1

4πT
∂aB4(a, b), B1(a, b) =

−1

4πT
∂aB2(a, b). (4)

For b → 0 we note b
4π

∑
n,σ →

∫
d2k
(2π)2

and get at b = 0

B4(a, 0) =
2π2T 4

3
B4(a), B3(a, 0) =

2πT 3

3
B3(a),

B2(a, 0) =
T 2

2
B2(a), B1(a, 0) = − T

4π
B1(a), (5)

where Bn(a) are the Bernoulli polynomials, periodically continued. The special values for, in
addition, a = 0 are

B4(0, 0) = −π2T 4

45
, B3(0, 0) = 0, B2(0, 0) =

T 2

12
, B1(0, 0) =

T

8π
. (6)

We note that these formulas hold for T > 0. Themotivation for the above choice of the notations
is that the functions Bn(a, b), (3), are the corresponding mode sums without additional factors.
More details about this representation as well as the renormalization and the case of T = 0 are
given in [1].

3. The magnetic field at high temperature
Let us consider the case of high temperature. We use eq.(59) of [1]. The effective potential

reads

W
SU(2)
gl =

b2

2g2
− π2T 4

15
− a1b

3/2T

2π
+

11b2 log(4πT/µ)
24π2

+ g2

(
T 4

24
− a2

√
bT 3

12π
+

a2
2bT 2

32π2

)
(7)
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The first term is the classical energy. The terms proportional to T 4 constitute the gluon black
body radiation. The contribution from the second loop is in the parenthesis. It has a T 3
contribution. The numbers a1 = 0.828, a2 = 1.856 are calculated in [1], eq. (22).

In oneloop order, the energy (7) has a nontrivial minimum resulting from the term pro
portional to b3/2T . The condensate and the effective potential in its minimum are

bonemin =
9a1

2α2
sT

2

16π2
, W

SU(2), one
min = −π2T 4

15
− 27a41α

3
sT

4

512π4
, (8)

where αs = g2/(1 + 11
12

g2

π2 log(4πT/µ)) is running coupling constant, µ is a normalization
point for temperature. The first term of the energy is the gluon black body radiation. In this
approximation, the condensate is always present, and the energy in the minimum is always
negative. That means the spontaneous vacuum magnetization and SU(2) symmetry breaking.
Here also an imaginary term presents, but we are concentrating on the real part. The standard
way to remove the imaginary term of oneloop effective potential is adding the daisy diagram
contributions (see [8] for details). From (8) we see that the presence of αs weakens the field
strength at high temperature.

Now we turn to the two loop case. We consider the high temperature limit and take into
consideration the ∼ T 3 term in (7). Denoting b1/2 = x we obtain the thirdorder polynomial
equation for determining the condensate value:

x3 − 3

4π
a1Tαsx

2 − g2

24π
a2T

3αs = 0. (9)

The real root of it can be found using formulas from the standard text book [18], Chapter 3.8.
The result is

x0 = b
1/2
min =

1

4

(2a2αs)
1/3

π1/3
T +

1

4π
a1αsT. (10)

If we compare this with (8), we find that the second term is three times less than the one in (8).
The most interesting is the change of the temperature dependence coming from α

1/3
s . Hence,

the first term is dominant for this case. For the field strength we get in this limit

bmin =
1

16

(2a2αs)
2/3

π2/3
T 2. (11)

Note also, the value a2 is larger than a1. As a result, the role of the second loop is important.
As fare as we know, formula (10) was not noted in the literature elsewhere.

4. The minimum of the effective potential for pure A0

In this section, we remind the known results for the case of a pure A0background. We
follow the recent paper [21], where this case was investigated in detail for SU(3). In the SU(2),
formulas are simpler. For b = 0, the effective action (1) with (5) is expressed in terms of
Bernoulli’s polynomials. We restrict ourselves to the main topological sector and there to 0 ≤
a ≤ 1/2. Here, the effective potential has a minimum at a = amin (see also eq. (6) in [15]) and
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takes in this minimum the valueW|a=amin
= Wmin with

(gA0)min =
3− ξ

16π
g2T, Wmin = −π2T 4

15
− (3− ξ)2T 4

192π2
g4. (12)

Asmentioned in [21], (12) coincideswith the gaugeinvariant result for ξ = −1, what we assume
in the following. The first term of the effective potential is the gluon black body radiation.

Let us compare (12) with the minimal effective potential (8) in the pure magnetic case.
We see in the latter case, the extra temperature dependent factor (1 + 11

12
g2

π2 [log(4πT )/µ)−1 is
present and decreases the value of the magnetic condensate at high temperature. For the two
loop result (11) the strength of the field is larger. But again at sufficiently high temperature the
α
1/3
s factor makes the value of bmin(T ) smaller compared to the value of (gA0)min (12). As a

result, since both condensates have negative energies they should be generated. This decreases
the total free energy of the system.

5. Stability of the charged gluon spectrum
The well known instability of gluon vacuum in magnetic field (which was not discussed

above for special reasons) is the consequence of big magnetic moment for color charged gluons.
For them the gyromagnetic ratio equals to γ = 2. That results in the unstable (tachyon) mode
in the spectrum in magnetic field, −p24 = p20 = p23 + (2n− 1)b for the lower state n = 0. In the
presence of both condensates the charged gluon spectrum reads

(p4 + (gA0)min)
2 + p23 + (2n− 1)bmin. (13)

First, substituting the one loop minimum value (8) and (12) for p4 = 0, p3 = 0, n = 0 we find
the relation ensuring vacuum stability

g4 ≥ 81a1
2α2

s. (14)

Second, for the two loop case (11) we get

g4 ≥ (2a2αs)
2/3π4/3, (15)

correspondingly. Clearly that the latter case is realized at more high temperature. The vacuum
consisting of two condensates is stable because of αs(T ) decreasing with temperature increas
ing. This is the crucial fact coming from asymptotic freedom. Both condensates are needed to
have stable vacuum. Because of different temperature dependence they dynamically coexist in
such a way that the effective potential is real in the considered approximation. There are no
unstable modes at high temperature. Thus, the mechanism of vacuum stabilization is clarified.

6. Conclusions
In the forgoing sections, we investigated the two loop effective potential of SU(2) gluody

namics in the background eitherA0 or color magnetic fieldH3. Using the integral representation
(1), we calculated the A0(T ) and H3(T ) condensates in given approximation. For the former
field, we have reproduced the known result from the literature (see resent paper [16] for more
details). But for the latter one we obtained new expression for the field strength (10). This re
sult means the importance of the two loop contribution to the effective potential and detects the
temperature dependence of the magnetic field condensate.

It worth to note that the standard approximation for investigating phase transitions at finite
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temperature accounting for the one loop plus daisy diagram contributions is insufficient in the
case of two condensates. It is applicable for the spontaneous magnetization, only. Remind, the
daisy diagrams account for long range correlations like tachyon states of the spectrum. As it
was found already, the imaginary part coming from the one loop effective potential is exactly
cancelled by the term entering the daisy diagram series (see, for instance, [8]). But in such
approximation there is no A0 condensation. The latter is realized as the correlation of the two
and oneloop contributions. Here it is important thatA0(T ) is dynamical parameter having zero
value in tree approximation.

Within carried out investigations, we found the vacuum structure and the mechanism of the
magnetic field stabilization at high temperature. It consists in the coexistence of the A0(T ) and
H3(T ) condensates generated spontaneously. In this field configuration there are no unstable
modes for charged gluons at high temperature. This is in agreement with the heuristic specu
lations and qualitative estimates given in [20] and the results of the lattice simulations fulfilled
already in [12].
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