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Dicke model provides describing the superradiance effect when the spontaneous emission of a great 

number of excited two-level atoms is running in a correlated way due to their interaction via field. The 

process is identical to a giant dipole emission. Since the ordering takes place, it is interesting to study the 

possibility for using the terms of phase transition theory in such physical situation. Equilibrium properties 

of Dicke type models were studied for a long time because of their relevance for explaining some 

phenomena in matter-field interaction. The existence of an ordered phase in the emitter subsystem together 

with macroscopic photon mode filling is established, wherein the correct solution requires the Bogolyubov 

concept of quasiaverages to exclude the phase uncertainty of quasispin component structures 


R  and 

R


 (for the concentrated model). In this paper, the behavior of similar order parameters for the non-

equilibrium process description is analyzed and using the order parameter 
 

R R  associated with the 

squared electric dipole moment of the emitter complex is substantiated. Such fact justifies 3R  application 

in the literature devoted to the superradiance theory. The situation with quasiaverages is compared with 

the problem of uniformity breaking in the numerical modeling.  
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1. Introduction 

In the fundamental Dicke`s paper [1] the superradiance effect was predicted through 

considering the selection rule for the interaction operator of a concentrated (small compared 
with a wavelength) system of two-level emitters. Such operator included collective operators 
of quasispin nature, its matrix elements squared determined the dipole radiation intensity. 
Some years later, laser invention encouraged attempts to use Dicke ideas in laser generation 
theory. Though the last required another approach because of the stimulated emission role 
[2], such attempts support the interest to superradiance problem. Moreover, just the laser 
technology allowed the first experimental observation of this phenomenon [3]. At the same 

time, the Dicke model was studied from the point of view of equilibrium statistical theory and 
showed the possibility to move into an ordered state at low enough temperatures. This 
“superradiant” phase transition proved to be very topical both for the problems of light and 
matter interaction in a cavity and for the general theory of systems including interaction with 
boson fields. The analysis of ordering in Dicke system showed the necessity of using 
quasiaverages for the removal of degeneracy of physical parameter values with respect to 
phases similarly to the Bogolyubov theory of superfluidity. For the purpose of obtaining 
physical results, we propose to use the phase invariant combination of parameters leading us 

to usually applied physical quantity (averaged 3rd component of quasispin). In numerical 
modeling of a prolonged system, we met with analogous difficulties that were overcome in a 
natural way. Thus, the paper connects the results concerning the phase transition in Dicke 
model and considering non-equilibrium processes in it. 

The paper is structured in the following way. Section 2 discusses the quantum effect 
observed in a system with Jaynes– Cummings Hamiltonian and the free energy calculation 
for Dicke system. Section 3 explains introducing quasiaverages in Dicke model and the 

nature of equilibrium state degeneracy. Section 4 presents the main result concerning the 
expedience of using a parameter taking a zero value at the maximum ordering in the system 
and some aspects of comparing the superradiance effect with phase transitions.  
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2. Jaynes–Cummings model and superradiant phase transition 

Dicke process does not require an optical cavity and takes place in an open system. A real 
experimental situation supposes the presence of a cavity always. In superradiance 
investigations the cavity influence is considered as an additional factor. But in quantum 
optics a prominent place belongs to the Jaynes–Cummings model [4]: 

JC int
ˆ ˆ ˆ ˆ

f mH H H H    (1) 

where Hamiltonian components correspond to a single field mode ˆ
fH a a  , a two-

level atom 0 3
ˆ

mH r  , and their interaction  int 1Ĥ gr a a  . Note, that 1 2 3, ,r r r  are 

quasispin operators expressed via Pauli matrixes / 2i ir   , ,a a  are boson operators. 

The combinations of quasispin operators 1 2r r ir    are raising and lowering operators 

of the atom: ,r r       . One can write down the interaction constant as  

  0

2
g

V


  


e d  (2) 

where e stands for the mode polarization vector, and d defines the non-diagonal matrix 

element of the atom dipole moment: ˆ i  d d . The field is quantized in the cavity 

volume and the fixed mode is considered. The view of intĤ  may be reduced to the form 

ˆ ˆ-E d  where Ê  is the electric field operator in the point of atom localization [5, 6]. The 

two-level atom interacts with a single mode of photon field, and they form an isolated 
system. Its behavior studied on the consistently quantum basis proved the fruitfulness of 
the attention to the quantum description of electromagnetic field. Such approach allowed 
the substantiation of collapse and revival of probabilities to find the atom in the excited 

state due to the discrete structure of energy levels of the atom. The indicated phenomenon 
was observed 20 years later [7], but it also stimulated the interest to properties of a 
complex of two-level atoms interacting with photon field. The Jaynes–Cummings 
problem has a quantum-mechanical character, not statistic. The ordering in it consists in 
return to the pure quantum state.  

The next question is the possibility of arrangement in a system of many atoms 
emitting photons. It is just a Dicke system. Based on the above, we consider it in the 

quantum terms and use the quasispin operators for describing emitter states. Dicke 
Hamiltonian can be written down in the same form as (1): 

 D 0 3 ,

,

ˆ
n n n n

n n

H a a r g r a r a          k k k k k k

k k

 (3) 

For simplicity, we restrict ourselves with Dicke Hamiltonian in rotating wave 

approximation [2]. Its thermodynamic properties were studied intensively since the 

famous paper by Hepp and Lieb [8]. It turned out that in the one-mode case ( 0  k ) 

this system undergoes a phase transition to the state with spontaneous polarization of the 

emitter subsystem 0R   at temperatures less than θc to be found from the equation 

1
2

0 0Arth
2

c
g


    

    
   

. (4) 
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Here the notation for collective quasispin operators n

n

R r   is used, temperatures are 

measured in power units kT  , k is Boltzmann constant. The phase transition is 

possible if strong coupling condition is observed: 

0g    (5) 

where g g V  is a dipole-photon coupling constant of zero thermodynamic order (g is 

given by expression (2)). The order parameter 
1

R
N

   is determined from the equation 

    4 44 2 2 4 2
0 0 04 th 4 2 .g g g          (6) 

Note that even quantum-mechanical averages of R  expressed through nr
  possessing 

zero diagonal matrix elements should be zero. Thus, in Dicke model we deal with 

spontaneous symmetry breaking. 

3. Quasiaverages in Dicke model 

Dicke model is attractive for equilibrium statistical study. Considering the system of 
two-level emitters in boson thermostat at a fixed temperature θ, we can easily calculate 
the statistical sum Z. Then the free energy can be obtained as lnF Z   and all 

thermodynamic properties become known. The rigorous investigation requires separating 
boson and quasispin variables and thermodynamic limit procedure. Such approach was 
implemented on the basis of approximating Hamiltonian method developed by 
Bogolyubov (Jr.). Initially, in the one-mode model, the shift transformation, which is 

canonical in thermodynamic limit, is applied to photon operators:  

0

g
a R

N

    


,       
0

g
a R

N

  


 (7) 

and the Hamiltonian comes down to the form 

2

D 0 0 3

0

1ˆ g
H R R R

N

        


, (8) 

then its quasispin part equivalence at N   with the operator structure 

 
2

0 3

0

1
2

g
R R R

N

      


 (9) 

is established under the condition that real positive   minimizes the free energy of (9). 

The corresponding equation and its solution [9] reproduce results of [8]. The obtained 

value of parameter N    where ξ is expressed from (6). 

Further steps are based on Bogolyubov ideas put forward in studies of ideal Bose-gas. If a 
system Hamiltonian commutes with a physical quantity operator, the corresponding 
conservation law is valid. The boson part of (8) commutes with particle number operator. 
Hence selection rules for thermodynamic averages calculated for the system (8) are 
observed: 

0    .  

All results are formulated in the thermodynamic limit. Taking into account (7), we have 
the relations 
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0 0

g g
a a R

N N

      
 

,     

2

2

0

a a g

N

  
  

 
 (10) 

that mean the macroscopic filling of the resonance mode of electromagnetic field. 

Note that operators R  and R  are hermitian conjugate, and their averages must be 

complex conjugate. Fixing the real value of   in the approximating Hamiltonian (9), we 

bypass the problem of indefinite phase factor in the indicated averages and the necessity 

of using formalism of quasiaverages. 
The regular way of introducing quasiaverages for the models including interaction 

with boson field was developed in [10] (see also [11]). A more general Hamiltonian (with 
many-mode boson field, but the number of modes s is finite) is considered: 

  
1

ˆ
s

H a a N a L a L N L L T    
           



         . (11) 

  numerates boson modes and some collective operators L. Norms of operators L  and T 

as well as their certain commutators satisfy the necessary restrictions from above. 
Approximating Hamiltonian has the view 

   0

1

ˆ
s

H C T N g C L C L C C  
      



     (12) 

where 
2

g       , andC C
   are complex variational parameters. It is also 

convenient to use the auxiliary Hamiltonian 

1

ˆ
s

H T N L L  



    . (13) 

In the thermodynamic limit the specific free energy calculated for the Hamiltonians under 

consideration coincides if the variational parameters values C  are chosen from the 

condition of the absolute minimum of this function for (12). Then in some cases 

 0
ˆ 0

H C
L C   , though for the initial Hamiltonian this value should equal zero 

because of the symmetry of (11). The contradiction is overcome through introducing 
infinitesimal terms breaking this symmetry in (11). In [10] such form of the necessary 
operator structure is substantiated: 

1

ˆ ˆ 2
s a a

H H N C C
N N

 
   

    

  

   
       

   
 . (14) 

Here   are real positive parameters. Leading them to zero after 0N  , we come to 

physically correct result. In the thermodynamic limit 

ˆ ˆ
ˆ ˆ

,
H H

H H

a a
L C L C

N N 

 


    

   
 

 
     

 
. (15) 

Since infinitely small terms in Hamiltonian cannot change the thermodynamic properties 
of a stable system, using quasiaverages (14) instead the usual averages ensures the 
symmetry breaking description. According to Bogolyubov [11], changes of 
thermodynamic parameters when introducing infinitely small terms is named the 
degeneracy of the thermodynamic equilibrium state, and quasiaverages remove such 

degeneracy. 
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The one-mode Dicke model corresponds to the structure of (11), but 0  , so in 

(12) 
2

g    . Matter operators ,L L  are collective quasispin ones ,R R  . To our 

mind, in this case the conservation law of particle number is valid for “transformed” 

photons (7). Hence the zero values of averages ,    relate to additional averaging 

of random phase factor ie   just like such operation concerning the bose condensate in an 

ideal gas. Indeed, the operators ,a a  (as well as ,R R  ) are non-Hermitian and not 

associated with measurable physical quantities, and we can choose the indicated factor 
arbitrarily. Another convincing argument for this choice possibility is the physical sense 

of these operators: ,a a  describe the oscillating object, i.e. field, and ,R R   are 

connected with non-diagonal matrix elements of the dipole moment operator, which 

values depend of the phase factors of wave functions of the two atom states involved in 
interaction process [5]. This is the reason of the sufficiency of the calculations (7) – (10) 
for polarization evidence in Dicke model. 

4. Dipole moment in Dicke superradiance process 

Any real superradiance process is a non-equilibrium phenomenon and must not be 
described in terms of equilibrium theory. Electromagnetic waves in the Dicke system are 
enhanced during passing through the medium of emitters [12] and leave the region of 

their localization. Nevertheless, studying the equilibrium state of an emitter system 
interacting with the generated field gives the key to the understanding of the ordering 

nature in the system under consideration. It is clear that macroscopic values of ,R R   

arise when the dipole moments of emitters oscillating with the same frequency do it in 
phase. Such phasing appears due to their interaction via field. Since the phase factor in 

the indicated operators is arbitrary, considering their Hermitian product R R   seems to 
be expedient, and this structure can be interpreted using the quasispin properties. 

It is interesting to compare this phenomenon with the other one, in which the 
phasing is created by a radiation pulse. We mean photon echo predicted by Kopvillem 

and Nagibarov [13]. It is analogous to spin echo. A great number of emitters are 
transferred to an excited coherent state by a short pulse and start emitting in phase (signal 
of free induction). Then the induced macroscopic polarization of the medium gradually 
decreases because of a dephasing of the dipole oscillations. The second pulse change the 
sign of inhomogeneous dephasing and the initial phasing is almost restored, thus primary 
echo is formed. The phenomenon can be visually described in terms of quasispin 
behavior [14]. 

The classical model of superradiance outlined in [14] explained the role of phasing 
in the coherent spontaneous emission. The intensity of the mode k dipole emission of the 
complex of N identical atoms into a solid angle d  is expressed as 

     
4

2

,3
1,2

exp
8

i j i j

i j

dI N i d
c



 

                  
 ke d k r r  (16) 

where   is emitter frequency, , ke  is polarization vector, d  is atom dipole moment, 

,i j   are initial phases of emitters, ,i jr r  describe their positions. If the condition of 

“spatial synchronism”     0i j i j     k r r  is satisfied, the second term in the 

braces in (16) is proportional to 
2N . 
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In the quantum case we come to the well-known results obtained by Dicke [1]. 

Instead of phasing of the separate emitters, the collective states are the object of study. 
For the concentrated system the general view of the interaction term of the Hamiltonian 

can be written down as  int 1 1 2 2(0)H R R   A e e  where (0)A  is the vector potential of 

the field,  1 2,e e  are constant real vectors the same for all emitters and 1 2,R R  are 

collective quasispin operators. We consider the emitter subsystem states defined with the 

eigenvalues of the operators 2 2 2 2
1 2 3R R R R    and 3R , respectively  1R R   and M. 

For the N-particle system these quantum numbers satisfy inequalities 2M R N  . The 

symmetry properties of the Hamiltonian results in the selection rules for the matrix 
elements. Because the probability of spontaneous transition is determined by the 

corresponding matrix element square, only transitions with 1M   are allowed in the 
dipole approximation. The matrix element 

    
1

2
1 1 2 2 1 2 2

1
, , 1 1

2
R M R R R M i R R M R M        e e e e , (17) 

and setting 1R M  , we have the radiation rate of one molecule  
2

2 2
0 1 2

1

3
I e e

c


  . At 

2R M N   (all emitters are excited) 0I NI , i.e., cooperative effect is absent. It is 

maximal when 2, 0R N M  , and that means superradiation. More thorough analysis 

can be found in [14, 15]. 

Pay attention that if ,R MP  denotes the probability of a state ,R M , any 

superposition state radiates with intensity 

    0 , 0 1 2 1 2 0

,

( )( 1) SpR M

R M

I I P R M R M I R iR R iR I R R          . (18) 

Here   stands for the statistical operator of the system. We associate the total intensity of 

oscillating dipole radiation with the expression 

2 4

33с

D
 where D is electric dipole moment 

of emitting system. Therefore (18) connects R R   with the dipole moment squared. 

Now the place of the operator 3R in ordering description should be elucidated. In (17) and 

(18) the relations 

    2 2 2 2
1 2 1 2 1 2 1 2 3 3,R iR R iR R R i R R R R R         (19) 

are taken into account. Obviously, it is convenient to use the operator 3R  with a simple 

physical sense (the level population half-difference) instead of complex non-Hermitian 

operators. The operator 2R  commute with the accepted Hamiltonian and its value 
2R  

determined by the pumping is fixed during the radiation process. This allows to construct 
the evolution equation for a superradiant system [15]. Neglecting stimulated emission 
processes and population difference fluctuations we come to the differential equation for 

3R : 

22
3 3 3

1d
R R R R

dt T
    
 

. (20) 
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Here the time of an excited atom decay 1
0T w  where the probability of such decay 0w  

per time unit is proportional to 
2

d . This equation coincides with Dicke’s result if the 

initial state is fully inverted 2, 2N N . 

If the emitter dipole moment operator d̂  has only non-diagonal matrix elements, in 

the space of two-level atom states it can be represented as ˆ r r   d d d . Therefore, the 

total dipole moment acquires the form 
ˆ R R       D d d D D . (21) 

In accordance with (17), the hermitian conjugate operators introduced in (21) have non-
zero matrix elements only between neighboring in energy levels of Dicke system and 
possess all properties of the physical quantity operator in the quasiclassical limit [15]. 

The average value of 
D  for a package ,R M  where M lies in a small interval M  near 

M  equals to   
1

21R M R M    d  that gives the dipole radiation intensity 

 
4

2 2

3

4
1

3
I R R M M

c

     
  

d . (22) 

Thus, we can speak that a macroscopic dipole is formed in Dicke system and for its 

dipole moment squared the operator 
2
R R 

d  gives adequate description. The essence of 

ordering is phased emission of a great number of microscopic emitters. In quantum theory 
terms, we deal with a collective state in the system of identical objects. Initially after 
pumping, the cooperation effect is absent, but gradually the ordering takes place and 

intensity grows rapidly. Some electric polarization arises in the system, but it doesn’t 
have a static nature. The polarization is of oscillating character, and its amplitude reaches 
macroscopic values. The quasispins turns out to be in the plane xy, and it is the moment 
of the maximal cooperative effect. In authoritative monographs a graphic image is 
presented only for individual quasispin [5, 14]. So, the convenient parameter – level 

population difference 3R  – is zero when the peak of emission is reached. Very special 

nature of quasispin arrangement in Dicke system put forward a lot of questions for many 
years after the underlying theory creation [5]. This fact explains the term “dynamic phase 
transition” concerning the Dicke process. 

The authors studied just the kinetics of the non-equilibrium Dicke process and the 
picture of correlations. This problem was solved for a concentrated system 35 years ago 
[16] for the concentrated system Trying to implement the numerical research of extended 
system, we faced the problem of fixing the phase of the wave field. This question has a 

lot in common with the choice of phases of non-Hermitian operators in the equilibrium 
problem. Infinitesimal field introducing is like the method of quasiaverages. This 
research led us to the establishing the order parameter in the non-equilibrium situation 
and using the results of works devoted to Dicke model thermodynamics. 

5. Conclusions 

Ordering nature has been analyzed both for equilibrium and nob-equilibrium Dicke 
model with comparing such properties and necessary approaches in Jaynes–Cummings 

model, photon echo studies, and general theory of matter and boson field interaction. 
Polyatomic system in Dicke model can transfer into the ordered state with macroscopic 
boson mode filling, the order parameters formally can be complex. The general way of 
solving such problem based on the method of quasiaverages is presented with underlying 
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the role of phase factors. The leading role of emitters phasing in superradiance and 

photon echo is substantiated, though in Dicke process it arises spontaneously, and this 
phenomenon requires consistent quantum analysis. The paradoxical situation in its theory 
is commented: the generally used description parameter (the collective quasispin 
component R3) proves to be zero at the ordering maximum. The application of the order 

parameter R R   constructed from those of equilibrium model is reasoned. Such 

parameter takes a macroscopic value, but corresponds to an oscillating quantity, so 
thermodynamical ideas can hardly be applied, and dynamic phase transition seems to be a 
better version. 
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