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A classical system of point charged particles and electromagnetic field is investigated in the general 

formulation, in which there is no direct interaction of the particles with each other. Particles are assumed to 

be non-relativistic for research simplicity. The point of view is defended that gauge choice determines the 

physical picture of processes in the system. The idea of extended gauge, in which scalar k  and longitudinal 

part 
l
nkA  of the vector potentials transform separately for large and small wave numbers, is proposed. 

Moreover, in the new gauge 0k   only when 0k k  and 0l
nkA   only when 0k k , where 0k  is a 

certain wave number. This greatly simplifies the study of the system dynamics, in which the transverse 

components 
t
nkA  of the vector potential are taken into account and do not change at the gauge 

transformation. Basing on the extended gauge idea, it is established that the system has a massive 

oscillatory mode  described by a transverse potential 
t
nkA  and an oscillatory mod described by a 

longitudinal potential 
l
nkA with the laws of dispersion 

2 2 1/2
0( )k   і 0 , respectively ( k ck   is the 

dispersion law for electromagnetic waves in  vacuum, and 0 is the plasma frequency). These modes can be 

called electromagnetic and plasma ones. At the same time, effective interaction between charged particles is 

introduced, which describes the screening effect. A connection of our work with Bohm and Pines 

investigations related to the presence of plasma modes in a Coulomb system, in which they do not use idea 

of gauge transformations, is analyzed. 
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1. Introduction 

Classical system consisting of electromagnetic field and non-relativistic charged 

particles is investigated. Its Lagrangian in standard notations has the form 

2
3 2 21 1

( ) ( ) { ( ) ( ) }
2 8
a a

a an n a a a

a a a V

m
L e A x e x d x E x B x

c


      


     (1) 

(V  is a volume of the system). Electric and magnetic fields are expressed through potentials 

( )nA x , ( )x  by usual relations  

/ gradn n nE A c    ,      rotn nB A . (2) 

Quantities ( )nA x , ( )x , ax  are generalized coordinates of the system and ( )nA x , ( )x , 

a ax   are the corresponding generalized velocities.  

It is known that field potentials are not unique and can be changed by the gauge 
transformation 

1( , ) ( , ) ( , )n n nA x t A x t x t    ,  1( , ) ( , ) ( , ) /tx t x t x t c     , (3) 

despite the fact that they are generalized field coordinates (here ( , )x t  is an arbitrary 

function, old potentials are supplied here with sub 1). The replacement of potentials as 

generalized coordinates, as well as gauge transformations, are used in the literature to 
introduce  an effective  interaction of charges, which  allows describing  the system dynamics 
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without considering the degrees of freedom of the field. This was realized when Darwin 

[1] derived the Hamiltonian for a system of charged particles in a weakly relativistic 

approximation only with accuracy up to 2( / )a c  since the contributions of higher orders 

ultimately coincide with ones of electromagnetic waves (see also [2]). 
An important example of the study of effective interactions is the Bohm–Pines [3] 

theory of plasmons as collective motions in a system with a Coulomb interaction of 
charges (a non-relativistic system of charged particles). The equivalence of such a system 
to a system with some shortrange part of the Coulomb interaction in the presence of a 
longitudinal long-wave vector potential field was asserted. However, it was noted the 

need to use some additional conditions that compensate the increase in the number of 
degrees of freedom of the system. This shortcoming was overcome in our report at the 
MMET-2012 conference [4], where the implementation of the Bohm–Pines approach 
within the framework of the complete theory of the electromagnetic field and charges 
system by using a gauge transformation of the field potentials was proposed. 

The current work develops and concretizes our approach [4] to studying the system 
of the electromagnetic field with charged particles. The task is to obtain an effective 

Hamiltonian of the system with subsystems of charges with a shortrange effective 
interaction between them, with electromagnetic and plasma modes. 
The structure of the paper is as it follows. The Іntroduction describes the system under 
consideration. The second section introduces an idea of the extended gauge of the 
potentials of electromagnetic field. The third section constructs an effective interaction of 
charged particles with each other. The fourth part discusses properties of the Hamiltonian 
of the system. In the Conclusions the obtained results are summarized. 

2. Extended gauge of electromagnetic field potentials 

Below we use periodic boundary conditions and usual Fourier expansion of the 
potentials 

1
( ) ikx

n nk

k

A x A e
V

  ,    3( ) ikx
nk n

V

A A x e d x  ; 

1
( ) ikx

k

k

x e
V

   ,         3 ( ) ikx
k

V

d x x e   , 

(4) 

introducing transversal and longitudinal parts l

nkA , t

nkA  of the vector potential 

l t
nk nk nkA A A  ,     

l
nkA || nk  ,    

t
nk nA k . (5) 

In these terms the Lagrangian (1) takes the form 
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(6) 

where Fourier transforms of the electric current ( )nJ x  and charge ( )x  densities are 

introduced 

( ) ( )n a an a

a

J x e x x    , ( ) ( )a a

a

x e x x     (7) 
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like notation (4) ( k ck  ). 

The potentials of the field are not unique and can be changed by a gauge 
transformation (3). These relations after Fourier transformation takes the form  

1( ) ( ) ( )l l

nk nk n kA t A t ik t   ,  
1( ) ( )t t

nk nkA t A t , 1( ) ( ) ( ) /k k t kt t t c     . (8) 

Each set of potentials describes the system from a certain physical point of view. 
Choosing this function as it follows  

1

0

( ) ( )

t

k kt c dt t         при 0k k ,                  
12

( ) ( )ln
k nk

k
t i A t

k
    при  0k k , (9) 

we obtain 

0k    at  0k k , 0l

nkA    at  0k k . (10) 

Quantity 0k  (cut off) defines considered scale of the wave vectors (then the long waves 

correspond to 0k k ). The concrete value of 0k  should be discussed in applications. 

In this paper we call the gauge transformation (8), (9) as the extended one. At the 

same time, we assume that the field t
nkA  describes the transverse mode of the system, 

which is a modification of electromagnetic waves taking into account the interaction with 

charges, and the field l
nkA  describes the longitudinal mode of the system, which exists 

only in the presence of the interaction of the field with charges and which should be 
called plasma mode. Close to the result of these transformations is the Bohm–Pines [3] 
theory of Coulomb plasma with the Lagrangian 

,
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without taking into account the degrees of freedom of the electromagnetic field. 
However, they transformed the long-range part  

0

*
lr

1

2

c c
k k

k k

U
V 

    (11) 

of the Coulomb interaction  

*

,

1 1 1 1
( ) ( ) ( )

2 | | 2 2 2

c c c ca b
a a k k

a b a ka b V

e e
U e x x x

x x V
        


    (12) 

into a long-wave part l

nkA  (with 0k k ) of the vector potential of an electromagnetic field. 

Here ( )c x , c
k are Coulomb potential of the system and its Fourier transform 

( )
| |

c a

a a

e
x

x x
 


 ,      

2

4c
k k

k


   . (13) 

It was done with some difficulties related to number of freedom degrees. 

3. Effective interaction of charged particles with each other 

The Lagrange function of the system (6) in the extended gauge takes the form 
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0 0
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(14) 

and describes a system of three non-interacting fields t
nkA , l

nkA , k  (since now 

0l
nk kA   ) and particles that interact with these fields. Let us introduce instead of the 

scalar potential k  a new scalar field k defined by the formula 

c

k k k    (15) 

where according (13) c
k  is the Coulomb field created by charge distribution k . Then 

the Lagrangian of the system (13) takes the form  
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(16) 

where one can consider  

0
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1
( )
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c

k k
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    (17) 

as an effective interparticle interaction. According to (12), 0( )U k can be called a short-

range part of the Coulomb interaction. The Lagrangian (16) does not contain linear in k  

terms. The field k  does not interact with the fields t

nkA , l

nkA  and charged particles. 

Therefore, it does not affect the dynamics of the system and can be dropped.  
Effective interaction U can be evaluated starting from transition to large volume  

0 0
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where 
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20
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x xk
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

     ( 0xk  ). 

(19) 

At long distances, function 0( , )x k  decays faster than the Coulomb interaction and 

describes a screening effect. The same effective interaction between particles was 
introduced in [1] from other considerations. Namely, the authors start from the Coulomb 
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interaction and use part of this interaction with 0k k  to introduce field of longitudinal 

vector potential l

nkA  with 0k k . 

4. Hamiltonian of the system 

The generalized energy of the system and its moments are defined by expressions 

t l
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Kinetic energy of the particles can be written in the form 
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(21) 

where gauge non-invariant current ( )nj x  and quantity ( )x  are introduced 

( ) ( )a
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m
   ,       

2
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e
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As a result, the Hamiltonian of the system is given by the expression 
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Here new notations are introduced 
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 (sub i  is a number of the component of particles in the system, in  is density of the i-th 

component). Frequency 0  is called as the plasma one and the fifth summand in (23) 

describes the plasma oscillations in the system which are oscillations of the longitudinal 

part of the vector potential of the electromagnetic field. The third summand in (23) 

describes oscillations of the transversal part of the vector potential with frequency ( )o

t k . 

The first two summands in (23) describe charged particles of the system which interact 

with effective interaction 0( )U k . So, we completely reproduced results of the paper [1] 

on a new basis considering transversal oscillations of the electromagnetic field in the 

medium. 

Note that from the sums in (23) with k k only two terms have been extracted. 

However, the mentioned sums are quadratic forms and can be diagonalized. Let us 

consider the corresponding eigen value problem. The matrix4 /k k V  is Hermitian one. 

For the mentioned purpose we need two kinds of the eigenfunctions 
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because for longitudinal waves wave vectors are restricted by relation 0k k . Here and 

further sub k  numerates eigen vectors and eigen values and takes the same values as an 

arbitrary wave vector of the corresponding waves. Eigen vectors t

k k  , t

k k   of these 

matrices constitute complete orthonormalized system of vectors 
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Eigenvalues t

k , l

k  are positive. This follows from the Fourier transform definition of 

the function ( )x  and formulas 
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which relations (19) give. Eigenvalues t

k  , 
l

k   are roots of the equations 
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At large volume of the system wave vectors take quasi-continuous set of values. 

Therefore, equations (22) contain infinite matrices and calculation of t

k , l

k  is possible 

only on the basis of these matrices truncation.  

The next transformations are conducted as it follows. Let us expand the fields t

nkA , 
l

nkA  in the eigenvectors 

t t t
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0
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
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(29) 

As a result, the Hamiltonian of the system takes the form 
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where compared with (18) renormalized dispersion laws for transversal ( )t k  and 

longitudinal ( )l k  waves are given and new notations for currents are used 

 2( ) t

t k kk    ,     ( ) l
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Quantization of the system with the Hamiltonian (31) can be easily conducted. 

5. Conclusions 

The main development of this work is an idea of extended gauge transformation. It 

is introduced in terms of the Fourier components of the scalar k  and longitudinal vector 

potentials l
nkA  in different intervals of the wave number. In our case, this is the domain 

0k k , where 0l
nkA  , and the domain 0k k , where 0k  . The wave number 0k  

determines the characteristic length of the problem 1
0k  . This unequivocally determines 

the effective potential of the interaction of system charges with account for screening. At 

the same time, the interaction between particles decreases according to the law 0
2

sink x

x
 at 

distances x >> 1
0k   As a result, it was established that the scalar potential 0k   does not 

depend on time in the extended gauge. 
It is proved that contributions to the Hamiltonian quadratic in the field describe 

transverse oscillations with the dispersion law 2 1/2( ) ( )t
t k kk     where k ck   and 

t
k , is a positive function. These are electromagnetic waves modified by the influence of 

charged particles. In the quantum version of the theory ( )t k  is the law of dispersion of 

photons that acquire mass. In the main approximation, 2
0

t
k   , 0  is the plasma 

frequency given by the formula 

1/2
2

0

4 a

a a

e

V m

 
   

 
 . It is also proved that the 

contributions to the Hamiltonian, which are quadratic in the field l
nkA , describe 

longitudinal oscillations with the dispersion law 
1/2( ) l

l kk    where l
k  is a positive 

function. These oscillations are absent in a vacuum, they should be considered as plasma 

ones with 
2
0

l
k   . In the quantum variant of the theory ( )t k  is plasmon dispersion law. 

Our study of the system of charged particles and the electromagnetic field is 
influenced by the works of Bohm and Pines. However, these authors did not consider the 
degrees of freedom of the electromagnetic field and had a problem with the number of 
degrees of freedom of the system. They did not use gauge transformations but modified 
the Hamiltonians of the system based on the idea of their unitary equivalence (in a 
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quantum case). In another approach, these authors obtained an effective Hamiltonian of 

the interaction of charged particles of the system, which coincides with ours. Plasma 
oscillations in the Hamiltonians are also described by the longitudinal part of the vector 

potential l
nkA  with approximate frequency 0 . 

The leading idea of our study is that the choice of potential gauge determines the 
physics of the problem. We introduced the term “extended gauge” for the name of the 
gauge used in this work clarifying the role of Bohm and Pines in the study of the system 
of charged particles and the electromagnetic field. 
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