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On the basis of our previous study of the quantum system of atoms and the electromagnetic field, a 

system of non-relativistic stationary and non-interacting small one-electron atoms located in a region much 

smaller in size than the characteristic wavelength of the field is considered. Atoms are considered in the 

two-level approximation and interact with the field by dipole-electric interaction. We carefully analyze the 

state space of the atom and the operators in it in the spin / 1 2s  formalism, which leads to the Dicke 

Hamiltonian in terms of the spin formalism. 

Non-equilibrium states of the system are investigated using the reduced description method and 

described by the occupation numbers of photon states kn , the degree of excitation of the atoms 1 , and 

the value of correlations between them 2 . The basis of our consideration is the Peletminsky–Yatsenko 

model, the foundations of which and, in particular, the approach to solving the Cauchy problem, based on 

the notion of effective initial conditions, are thoroughly discussed. 

Since the Dicke model deals with the dynamics of a system of particles with spin, the technique of 

calculating the average values of products of spin operator proposed by Vax, Larkin, and Pikin is 

developed to a certain extent. Averages in a state with a statistical operator of a system of atoms with given 

excitations are considered. The obtained results are maximally simplified in the case of spin / 1 2s . 

The impossibility of calculations with a quasi-local statistical operator when describing the state of 

the system with parameters kn , 1 ,2  is overcome with using a somewhat simplified approach of our 

previous work, in which, instead of a parameter 2 , the system is described by a small deviation 

   2 2 20  of the parameter 2  from its value 20  when describing the system only by the 

parameters kn , 1 . Developed approaches to calculations with spin operators are used to calculate the 

quasi-equilibrium statistical operator when choosing of the quantities kn , 1 , and 2  as reduced 

description parameters and the right-hand sides of the time equations for these parameters. 
Keywords: superradiance, Dicke model, reduced description method, calculation with spin operators, small 

correlation dynamics, photon non-equilibrium states, long wave limit. 
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1. Introduction 

Modern physics deals with very fine phenomena, measurements, and tools for obtaining 

and processing the signals concerning the researched problems. In this view the correlation 
properties of emissions of different nature are of interest. Lasers based on stimulated 

emission of multiparticle systems of emitters are usual instruments of physical investigations 

now. Along with them, since the pioneer paper by Dicke [1], the superradiance phenomenon 
attracts serious attention of physicists. The Dicke process essence is the cooperative 

spontaneous emission. The development of correlations in a system without resonator opens 

the way to the coherent emission generation in new frequency ranges and gives a unique 
example of self-organization in non-equilibrium processes [2]. The consistent description of 

Dicke superradiance needs quantum notions, and the new optics section – quantum optics is 

formulated in terms of correlation functions [3]. Just in such way is constructed the theory of 

Dicke superradiance [4]. The peculiarity of this phenomenon description is the transition to 
the dynamics of emitter subsystem in accordance with Bogolyubov’s idea of “fast” and 

“slow” processes [5]. Herewith the most demonstrative parameter (level occupancy) remains 

almost constant for a long time and the correlation characteristics change exponentially [6].
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The general picture, especially in a prolonged emitter system, is still hard for study. The 

authors started the investigations of Dicke model in the early 2000-ies and were the first who 
applied the Bogolyubov reduced description method (RDM) to this problem. Our interests 

touched the questions about the influence of the system geometry, own motion of emitters, 

correlation properties of the generated field [7-9]. RDM provides the possibility of solving 
the problem of correlator decoupling in the method of boson variable elimination [5, 6] but 

faces the problem of calculating averages with the spin Hamiltonian of complex structure. 

This paper presents the new results concerning the indicated difficulties. 

The work has the following structure. Section 2 presents the substantiation of the Dicke 
model in detail. Section 3 describes basics of the atom and electromagnetic field dynamics in 

the reduced description method. Section 4 presents some new ideas in spin operator 

calculations. Section 5 is devoted to small correlation dynamics of the Dicke model. Section 
6 realizes emitter-field dynamics with the spin operator technique. 

2. The Dicke model of a superradiant system 

A system of atoms with one electron, which are stationary in space and interact with a 

system of photons, is considered. The Hamiltonian operator of such a system in the main 

approximation (quasi-relativistic theory, small size of atoms) has the form [10] 

,
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 Here nx  is a radius-vector of the atom nucleus, nex  is a relative radius-vector of the electron 

and nep  is a corresponding momentum, ,m e  are electron mass and charge modulus, 
ˆ

nd  is 

atom dipole moment, 
ˆ
( )E x  is a transversal electric field operator 
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in standard designations of quantum electrodynamics. Particularly 
k

с


, 
k

c


 are operators of 

creation and annihilation of a photon in the state with polarization   and wave vector k  

(these operators traditionally are written without hats), 
k

e


 are polarization vectors (they can 

be chosen real), k ck   is photon spectrum. We use periodical boundary conditions and 

suppose taking the limit V   after the calculations are complete. At the same time the 

atom system is considered small compared to the wavelength of the photon field   

| |nx L   (1 n N  );      L      ( 2 / k   ). (2.3) 

In such case, we may choose the electric field operator independent of coordinates in our 

research  
1/2

,

2ˆ
( ) ( )k

k k k
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E x e c c
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

  


  
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In the two-level approximation only electron transitions between states | ,n   ( 1,2 ) 

in each atom are taken into account 
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ˆ | , | ,neH n E n   ,    , | ,n n 
      ,     

1,2

ˆ| , , | 1nn n


   . (2.5) 

The basis | ,n   can be chosen in such way that atom dipole moment operator 
ˆ

nd  has the 

matrix elements in it [11] 

ˆ
, | | , 0nn d n    ,      

ˆ ˆ
,1| | ,2 ,2 | | ,1n n nn d n n d n e d      , (2.6) 

where d  is a positive scalar, which is the same for all atoms, and ne  is a unit vector with 

own direction for each atom. The first equality follows from the fact that the operator 
ˆ

nd  is a 

polar vector, and the second one resembles an arbitrary phase factor in the eigenvector 

definition. 

Formulas (2.5) and (2.6) allow to write the dipole moment operator 
ˆ

nd  and the 

Hamiltonian ˆ
neH  in the form 

, 1,2

ˆ ˆ
| , , | | , , | (| ,1 ,2 | | ,2 ,1|)n n nd n n d n n n n n n e d

  

           

, 1,2

| , , | x
ne d n n 

  

   

1 2

1,2

ˆ | , , | | ,1 ,1| | ,2 ,2 |neH n n E n n E n n E



       

1 2 1 2(| ,1 ,1| | ,2 ,2 |)( ) / 2 (| ,1 ,1| | ,2 ,2 |)( ) / 2n n n n E E n n n n E E          

1 2 1 2

, 1,2

ˆ( ) / 2 | , , | 1( ) / 2zE E n n E E
  

        

(2.7) 

Here we use Pauli matrices  
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with doubled matrix elements of the operators 

, 1,2
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  

    ,      
, 1,2

ˆ | , , | / 2y y
ns n n 

  

    , 

, 1,2

ˆ | , , | / 2z z
ns n n 

  

    . 
(2.9) 

In these terms the dipole moment operator 
ˆ

nd  and the Hamiltonian ˆ
neH  take the form 

ˆ
2 x

n n nd d e s ,        0
ˆ ˆz

ne nH s       ( 0 1 2E E   ). (2.10) 

The last term in the atom Hamiltonian in (2.7) determines only the beginning of the energy 

countdown, so it is omitted here. As a result, the Hamiltonian of the system of atoms and 

photons (2.1) is given by the formula 
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(2.11) 

which can be named the Dicke Hamiltonian. 

It is easy to check that the commutation relations  

ˆ ˆ ˆ[ , ]x y z

n n n nns s is   ,      ˆ ˆ ˆ[ , ]x z y

n n n nns s is    ,    ˆ ˆ ˆ[ , ]y z x

n n n nns s is    (2.12) 

are fulfilled for operators from (2.9), so they have the properties of spin operators (without 

the factor ). That is why the notation ˆ ˆ ˆ, ,x y z

n n ns s s  is used for them in this paper. In [10] these 

operators were named Dicke operators and designated ˆ ˆ ˆ, ,nx ny nzr r r  in accordance with Dicke 

[1], but the successive derivation of the Hamiltonian (2.11) (see (2.5) – (2.10)) is absent in 

the fundamental work.  

3. Cauchy problem in the reduced description method  

for nonequilibrium processes 

The non-equilibrium states of the system are described by the average values ˆSp ( ) at  

of some parameters, where ˆ
a  are the operators of these parameters ( a  is the parameter 

number). In the Dicke model described in the previous section, these are the parameters a : 

1 2, ,
 

   
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(3.1) 

In this problem, the value 1  determines the degree of excitation of the system of atoms, and 

2  characterizes the correlations in it; 
k

n  is the average number of photons in the state 

k . In the literature [5, 12], it is believed that these parameters adequately describe the 

phenomenon of superradiance. 

Our study of non-equilibrium states of the Dicke model is based on Bogolyubov's 
reduced description method [13]. It is based on the functional hypothesis, according to which 

the statistical operator (SO) of a non-equilibrium system ( )t  at large times 0t    

depends on time and the initial state of the system 0( 0)t     only through the mediation 

of a limited number of parameters, which are called reduced description parameters (RDPs). 

0
0( ) ( ( , ))

t
t t


        (Sp ( ) 1   ,    ˆSp ( ) a a     ) (3.2) 

і визначаються формулою 

0
0

ˆSp ( ) ( , )a at
t t


    . (3.3) 
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( ˆ
a  are RDP operators). The arrow in formulas (3.2) and (3.3) indicates that their right parts 

are the asymptotics of the left part. It is convenient to write the solution of the quantum 
equation using the Liouville operator L  

( ) ( )L   t t t ,      ˆ[ , ]L  
i

H ;       0( ) L  tt e . (3.4) 

The basic ideas of RDM are important for our research. The leading statement is that the 

statistical operator 0( ( , ))t    exactly satisfies the Liouville equation 

0 0
ˆ( ( , )) [ ( ( , )), ]t

i
t t H         (3.5) 

with the Hamilton operator Ĥ , and the parameters 0( , )a t   exactly satisfy the time equation 

0 0( , ) ( ( , ))t a at L t      ,            ˆ ˆ( ) Sp ( )[ , ]a a

i
L H     . (3.6) 

In RDM applications, in particular for studying the states of the Dicke model, it is 
important to study the influence of the initial state of the system on its evolution [5, 12]. To 

consider the Cauchy problem, the solutions of equations (3.5) and (3.6) are continued to 

0t  , although they describe the system evolution only for 0 t . Herewith, the values of 

the functions 0( , )a t   at 0t   are called effective initial conditions. 

Taking into account the expression for the function ( )aL  , the SO ( )   satisfies the 

nonlinear differential equation 

 
( ) ˆ( ) [ ( ), ]aa

a

i
L H

 
   


 , (3.7) 

which can be solved only approximately in some perturbation theory. The case of the 

Hamiltonian 0 1
ˆ ˆ ˆH H H   with the main 0Ĥ  and small 1Ĥ  parts is particularly important. 

Formally, 0ˆ ~H  ,  1
1

ˆ ~H   where   is a small parameter).  

Consideration of non-equilibrium states of the system begins with the selection of RDPs 

and their operators ˆ
a . The previous development of the theory of non-equilibrium processes 

is the basis for this work. At the same time, the modern trend is to expand the set of RDPs by 

taking into account non-equilibrium correlations (fluctuations) of the studied RDPs. 

A constructive approach to the selection of RDPs was proposed by Peletminsky and 

Yatsenko using the symmetries of the basic Hamiltonian 0Ĥ . This led them (see the original 

paper [14], as well as [13]) to a model (Peletminsky–Yatsenko model, in further PYa model) 

in which the RDPs operators satisfy the condition 

0
ˆ ˆ ˆ[ , ]a ab bb

H c   , (3.8) 

where abс  is a C-number matrix. For the study of superradiance in the Dicke model, we 

proposed RDPs with operators (3.1) while operator 0Ĥ  (2.11) is the main contribution to the 

Hamiltonian. Since simple ratios are valid 

0
ˆ ˆ[ , ] 0 aH ,       ˆ ˆ[ , ] 0  a b , (3.9) 
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non-equilibrium processes in the Dicke model can be investigated within the framework of 

the PYa model. In this regard, we will discuss the important results of this model theory. 
Based on it, the authors established a functional hypothesis in the basic approximation of 

perturbation theory [13] 

0

0
0 0

ˆ( ( Sp ))

i
t

t
qt

e Z e


   
c

L       ( 0 0
ˆ[ , ]

i
H  L ). (3.10) 

Such formulation includes a SO 

 ˆ( ) exp ( )q a aa
Y Y Y     ,    Sp ( ) 1q Y      (3.11) 

which is called quasi-equilibrium (it is close to the equilibrium SO in certain cases). 

Functions ( )aZ   in (2.7) are determined by the condition 

ˆSp ( ( ))q a aZ     . (3.12) 

Bogolyubov showed that equation (2.7) for the statistical operator ( )   is invariant with 

respect to time inversion and should be supplemented with a boundary condition that selects 
the physical direction of time [15]. As such a condition, the authors of the model chose the 

functional hypothesis (3.10) in the main approximation of the perturbation theory for the SO 

0 ( )    , which, taking into account (3.2), takes the form 

 0

0

( ) ( ( )

i
t

t
qt

e Z e


   
c

L  (3.13) 

and is written in terms of evolution in the physical direction of time. This relation made it 

possible to obtain a nonlinear integral equation from the nonlinear differential equation (3.7) 

0

0

( ) ( ( )) f ( )

i
c

q Z d e e






       
L , (3.14) 

where denoted 

1

( )ˆf ( ) ( ), ( )aa
a

i
H M

 
      
  

 ,   1
ˆ ˆ( ) Sp ( )[ , ]a a

i
M H     . (3.15) 

In these terms the right-hand side of the time equation (3.6) for RDP 0( , )a t   with 

considering (3.8) takes the form 

( ) ( )    a ab b a

b

i
L c M  (3.16) 

Equation (3.14) can be solved by an iterative procedure in perturbation theory by 1Ĥ  

because its integrand expression has the first order in this operator. For the SO ( )   we have 

( )

0

( ) ( )




     n

n

,      (0) ( ( ))    q Z , 

0

0

(1) (1)

1

( ( ))
ˆ( ) ( ( )), ( )

L



 

  

  
            

 i
c

q

q a

a a e

Zi
d e Z H M  . 

(3.17) 

The right-hand side ( )aL   of the time equation for RDP is given by the relation (3.16) and 

formulas 
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( )

1
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n
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1
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(2) (1)

1
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 a a

i
M H . 

(3.18) 

Let's move on to the calculation of the effective conditions, somewhat simplifying the 

approach of [13]. From (3.4), (3.8) we consistently have 

1
ˆ ˆˆ ˆ ˆ ˆSp ( ) Sp ( )[ , ] Sp ( ) Sp ( )[ , ]           t a a ab b a

b

i i i
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i
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0 1
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i
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(3.19) 

According to (3.4) and (3.5), ( ) t  and 0( ( , ))  t  satisfy the same time equation and 

therefore, taking into account (3.2), the following formulas are valid 

0 0
ˆ ˆSp ( ( , )) Sp ( (0, ))
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         
i
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                                      0 1
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      
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0 0 0 1
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i
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(3.20) 

The last formula is analogous to the previous one. Their difference has the form 

0 0 0
ˆ ˆSp ( ) Sp ( , ) (0, )

c c 

           
i i

t t

ab b a ab b a

b b

e t e t  

0 1

0

ˆ ˆSp{ ( ) ( ( , ))}[ , ]
c 

        
it

ab b

b

i
d e H . 

(3.21) 

In this relation, considering the functional hypothesis and the definition of the function 

0( , ) a t , it is possible to go to the limit t , which gives 

0 0
ˆ(0, ) Sp     a a  

0 1

0

ˆ ˆSp{ ( ) ( ( , ))}[ , ]
c


 

         
i

ab b

b

i
d e H . 

(3.22) 

Taking into account formula (3.4), its analogue for 0( ( , ))    , and the identity 

ˆ ˆˆ ˆSp( ) SpL Lt te a b ae b , we obtain the integral equation for 0(0, ) a  

0 0 0 0 1

0

ˆˆ ˆ(0, ) Sp Sp{ ( (0, ))} [ , ]
c

L


 
            

i

a a ab b

b

i
d e e H . (3.23) 
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This integral equation is solved in the perturbation theory in interaction 1Ĥ , which, in 

accordance with (3.8), gives 

0 0
ˆ(0, ) Sp     a a  

2
0 0 1

0

ˆˆ ˆSp{ ( (Sp ))}[ ( ), ] ( )



          q b

i
d Z H O      ( 0

1 1
ˆ ˆ( )

L


t
H t e H ). 

(3.24) 

This formula makes it possible to investigate the Cauchy problem in the Peleminsky–

Yatsenko model for an arbitrary initial state of the system. 

4. The technique of calculating averages with spin operators 

The key to the implementation of the reduced description method in the study of non-
equilibrium states of the Dicke model in the technique of calculations with spin operators. 

We will follow the mathematical developments [16, 17] for arbitrary spin s  and calculations 

with a statistic operator that describes a system of atoms with given excitations. This is 

designed to consider the Dicke model and its generalizations. 

In fact, in this section we will discuss the calculation of the average values of products 

of spin operators ˆ ˆ ˆ ˆ( , , ) x y z

n n n ns s s s  (1 n N ) for a system of N identical particles with spin 

s and the usual commutation relations  

ˆ ˆ ˆ[ , ]  x y z

n n n nns s is ,      ˆ ˆ ˆ[ , ]   x z y

n n n nns s is ,    ˆ ˆ ˆ[ , ] .  y z x

n n n nns s is  (4.1) 

Particles can be considered stationary and located in some points of space nx . For our 

purposes, it is convenient not to include Planck's constant in these operators. Along with 

them, such their combinations are widely used 

ˆ ˆ ˆ  x y

n n ns s is  (4.2) 

with properties 

ˆ ˆ ˆ[ , ] 

   z

n n n nns s s ,       ˆ ˆ ˆ[ , ] 2 

  zn n n nns s s .
 

(4.3) 

Particle numbers 1 2, ,...n n  are further used to abbreviate a record in the form of such 

type 

1 1
ˆ ˆx x

ns s ,   
1 1

ˆ ˆ
ns s  ,     

1 2 12n n   ,     

1 1 1

... ...
N

n 

  . (4.4) 

We do the same with other quantities with index n . Herewith the compact formulas are valid 

1 1
ˆ ˆ ˆ[ , ]zs s s   ,    

1 2 3 2 3 12 13
ˆ ˆ ˆ ˆ ˆ[ , ] ( )     zs s s s s ,    ˆ ˆ ˆ[ , ] 0  zs s s ,    

1 2
ˆ ˆ ˆ[ , ] 0  zs s s  

( 1

1

ˆ ˆ z zs s ,   1

1

ˆ ˆ  s s ).
 

(4.5) 

The state space of one particle with spin s  has the basis formed by vectors | , n s  

ˆ | , | ,    z

n n n ns s s        ( , 1,...,    n s s s ); 

2ˆ | , ( 1) | ,     n n ns s s s s        (
2 2 2 2 2ˆ ˆ ˆ ˆ ˆ ˆ ˆ     x y z z

n n n n n n ns s s s s s s ). 
(4.6) 

The state space of a system of N  spins is a direct product of N  such spaces, and its basis is 

given by the expression 
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1| | , ... | ,     Ns s  (4.7) 

and the trace of an arbitrary spin operator Ŝ  is defined by the formula 

ˆ ˆSp | |


  S S ,         
1

... ...
     

  
nn N s s

 

(
1 2 2 1

ˆ ˆ ˆ ˆSp SpS S S S ). 

(4.8) 

In the following, arbitrary products of spin operators ˆ ˆ ˆ, ,x y z

n n ns s s  of all particles are considered 

as Ŝ . According to (4.2), we can limit ourselves to products of operators ˆ ˆ ˆ, ,  z

n n ns s s , which is 

more convenient. 

In the general case, the state of a system is described with a statistical operator. The SO 

1
ˆ

0
 

 
z

n nn N
h s

e         ( 0Sp 1  ), (4.9) 

plays an important role. It can be called the SO of a system of N  spins in an external field  

nh , or a system of particles with known excitations. The normalization condition 0Sp 1   

gives such expressions for the functions   and 0  through the value of a statistical sum Z   

ln  Z ,   1
ˆ

0 /  
z

n nn N
h s

e Z       1
ˆ

Sp  
z

n nn N
h s

Z e . (4.10) 

According to (4.8), we have 
ˆ

1

| |


 

    
z

n nh s

n N

Z e       

( 1)

1 1

( ) / ( 1)
  

     

     n n n n n

n

h h s h s h

s sn N n N

e e e e  

1

1 1
sh ( ) / sh

2 2 

  n n

n N

h s h . 

(4.11) 

The average value ˆ S  of an arbitrary spin operator Ŝ  in the state with the СО 0  is 

given by the expression 

0
ˆ ˆSp   S S . (4.12) 

The average value of the product of operators ˆz

ns , according to (4.10), is determined by the 

formula 

1
ˆ

1 1

1

ˆ ˆ ˆ ˆ... Sp ... / /
...

 
   

 

z
n nn N

m
h sz z z z

m m

m

Z
s s s s e Z Z

h h
 (4.13) 

and, particularly, 

ln 1 1 1 1
ˆ ( )cth ( ) cth ( )

2 2 2 2


       



z

n n n n

n

Z
s s h s h b h

h
. (4.14) 

In the case 1 / 2s  this formula gives 

ˆ ( )  z
n ns b h         (

1

2
s ,  

1
( ) th

2 2

h
b h  ) (4.15) 

because 2cth2 cth th x x x . 
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Formula (4.13) using (4.14) takes the form 

1 1
1 1

1 1

2 1 2

ˆ ˆ... ( )
... ...

 
   

   
    

m m
z z

m

m m

Z
s s Z Z Zb h

h h h h h
  

and in further is applied for calculating the averages 1̂
ˆ...z z

ms s   

1
1

1 1

2

ˆ ˆ... ( )
...


 

  
 

m
z z

m

m

s s Z Zb h
h h

          ( ( )





n

n

Z
Zb h

h
,      1 1

1

1

( ) ( ) 
 

 
m

m

b h b h

h h
). (4.16) 

This result somewhat clarify its proof in [16, 17]. From this formula, in particular, we find 

1 2 1 2 1 12
ˆ ˆ     z zs s bb b ,       

1 2 3 1 2 3 1 3 12 1 2 13 1 2 23 1 12 13
ˆ ˆ ˆ               z z zs s s bb b bb bb bb b ,     

(4.17) 

where denoted 

( )n nb b h ,         ( ) /   n n nb b h h ,       2 2( ) /   n n nb b h h .  (4.18) 

Let us now consider the average values of arbitrary products Ŝ  of spin operators 

ˆ ˆ ˆ, ,  z

n n ns s s  with the SO 0  (4.10). First, we will prove that the average ˆ S  is different from 

zero only when Ŝ  has the same number of operators ˆ
ns , ˆ

ns  with arbitrary numbers of 

particles , n n . For the proof, we proceed from the identity 

ˆ ˆˆ ˆ   
z zhs hs h

n ne s e s e , (4.19) 

which follows from (4.5) in the differential equation method. From here we have 

ˆ ˆ ( )ˆ ˆ   
z z N N hhs hse Se S e , (4.20) 

where , N N  are quantities of  ˆ
ns  and ˆ

ns , respectively, in Ŝ . Then we take into account 

relations 

0
ˆ[ , ] 0 zb ,       (4.21) 

(4.20), and the trace property (4.8), which gives  

ˆ ˆ ˆ ˆ ( )

0 0 0 0
ˆ ˆ ˆ ˆSp Sp Sp Sp        

z z z z N N hhs hs hs hsS e e S e Se e S ,       (4.22) 

that is, if 0
ˆSp 0 S , then  N N . 

Let us now consider a number of transformations that express the average of the product 
of spin operators through the average of the product of the one less number of operators. 

1

1 2 1 2 1 2
ˆ ˆ ˆ ˆ ˆ ˆˆ ˆ[ , ] Sp            n n q n q qS s S S s S s S S  

  
ˆ ˆ

1 2 1 2 1 2 1 2
ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆˆ ˆ[ , ] Sp [ , ] Sp

            
z z

n n n n nh s h s h

n n q n n qS s S e s e S S S s S e s S S  

 

(4.23) 
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1 2 1 2 1 2 1 2
ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ[ , ] Sp [ , ]              n nh h

n q n n nS s S e S S s S s S e S S s  

  

1 2 1 2 1 2
ˆ ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ[ , ] [ , ]          n nh h

n n nS s S e S S s e S s S , 

that is 

1 2 1 2 1 2 1 2
ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ[ , ] [ , ]             n nh h

n n n nS s S S s S e S S s e S s S .  

From here we finally have what was promised 

1 2 1 2 1 2
ˆ ˆ ˆ ˆ ˆ ˆˆ ˆ ˆf [ , ] (1 f ) [ , ]           n n n n nS s S S s S S S s       

( f f ( )n nh ,        1f ( ) ( 1) hh e ). 
(4.24) 

This result is a generalization and simplification of the identity obtained earlier [16, 17]. Note 

that the function f ( )h  is expressed through the function ( )b h , introduced in (4.15) for 

1 / 2s , by the formula 

f (1 2 ) / 4  b b     ( 1 / 2s ) (4.25) 

since 2 (1 th ) / (1 th )  xe x x . Derivatives of the function b  are also expressed through it by 

the formula 

21/ 4  b b       ( 1 / 2s ),  (4.26) 

which is condemned by identity 2 2(th ) 1/ ch 1 th   x x x . 

Let's move on to the consideration of examples of the application of formula (4.24), 
which are important for the study of the Dicke superradiance model. For average products of 

two operators, we have 

1 2 1 2 1 1 12 1 1 12 1
ˆ ˆ ˆ ˆ ˆ(1 f ) [ , ] (1 f )2 (1 f )2                 zs s s s s b , 

 

1 2 2 1 2 2 12 1 1 12 1
ˆ ˆ ˆ ˆ ˆf [ , ] f 2 f 2              zs s s s s b  

(4.27) 

Average products of three operators, taking into account (4.17) and (4.27), are 

 

1 2 3 1 2 3 1 1 2 13 1 1 12 1 2
ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ(1 f ) [ , (1 f ) 2 (1 f )                      z z z zs s s s s s s s s s  

 

13 1 2 12 1 1 12 13 3 32(1 f ) ( ) (1 f ) 2(1 f )         b b b b ; 

 

1 2 3 2 1 2 3 2 1 3 2
ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆf [ , ] (1 f ) [ , ]z z z zs s s s s s s s s                

 

2 12 1 3 2 1 2 23
ˆ ˆ ˆ ˆf ( 2 ) (1 f )             z zs s s s  

 

2 12 1 3 13 1 2 23 12 1 12f ( ) (1 f ) 2f        b b b b ; 

 

(4.28) 
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1 2 3 1 2 3 1 1 2 31 1 1 21 3
ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ(1 f ) [ , ] (1 f ) 2                    z z z zs s s s s s s s s s  

 

1 31 1 12 1 1 21 1 3 1 13(1 f ) f 2 2(1 f ) ( )         b b b b . 

An average product of four operators equals  

1 2 3 4 1 2 3 4 1
ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ(1 f ) [ , ]              s s s s s s s s  

 

1 2 1 3 4 2 3 1 4 2 3 4 1
ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ(1 f ) [ , ] [ , ] [ , ]                  s s s s s s s s s s s s  

 

1 12 2 3 4 14 2 3 4
ˆ ˆ ˆ ˆ ˆ ˆ(1 f ) 2 2           z zs s s s s s  

 

1 12 3 2 3 4 12 3 2 4 3
ˆ ˆ ˆ ˆ ˆ ˆ(1 f ) 2 f [ , ] 2 (1+f ) [ , ]           z zs s s s s s  

 

1 14 3 2 3 4 14 3 2 4 3
ˆ ˆ ˆ ˆ ˆ ˆ(1 f ) 2 f [ , ] 2 (1 f ) [ , ]           z zs s s s s s  

 

1 12 3 23 3 4 12 3 2 34 3
ˆ ˆ ˆ(1 f ) 2 f 2 (1+f ) 2           z zs s s s  

 

1 14 3 23 3 4 14 3 34 2 3
ˆ ˆ ˆ ˆ(1 f ) 2 f 2 2 (1 f )            z zs s s s  

 

1 3 12 23 3 4 1 3 12 34 2 3
ˆ ˆ ˆ2(1 f )f 4(1 f )(1+f )              z zs s s s  

 

1 3 14 23 3 4 1 3 14 34 2 3
ˆ ˆ ˆ ˆ4(1 f )f 2(1 f )(1 f )              z zs s s s . 

 

(4.29) 

Taking into account (4.17), (4.24), and (4.27), from here we have 

1 2 3 4
ˆ ˆ ˆ ˆ     s s s s  

1 3 12 23 3 34 3 1 3 12 34 2 3 23 22(1 f )f (1 f )2 4(1 f )(1+f ) ( )             b b b b  

1 3 14 23 3 4 34 3 1 3 14 34 2 23 24(1 f )f ( ) 2(1 f )(1 f ) f 2           b b b b , 

(4.30) 

and 

2

1 2 3 4

1234

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ( )                 s s s s s s s s s s  

2 2

1 1 1 1 2 1 2 1 1

1 12 1

4 (1 f ) f 4 (1 f )(1+f ) 4 (1 f )          b b b b  

2

1 2 1 2 1 1 1 1 1 1

12 1 1

4 (1 f )f 4 (1 f )f 4 (1 f ) f       b b b b , 

 

that mean 

2

1 2 3 4

1234

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ( )                 s s s s s s s s s s  

2

1 1 1 1 2 1 2 1 1 1

1 12 1

8 (1 f ) f 4 (1 f )(1+2f ) 4 (1 f )(1 2f )          b b b b . 
(4.31) 
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Thus, rather complicated averages of products of spin operators can be calculated easily. 

5. Dicke superradiance model dynamics 

The Dicke model was proposed to describe the phenomenon of superradiance. In this 

model, the system consists of identical two-level atoms (emitters) and a system of photons 
(transverse electromagnetic field). The Dicke Hamiltonian of this system in terms of spin 

operators ˆ ˆ ˆ ˆ( , , )x y z
n n n ns s s s  and photon Bose operators ,k kc c  has the form, according to (2.11), 

 0 1
ˆ ˆ ˆH H H  ,      

0 0
ˆ ˆ ˆz

k k

k

H n s    ,          1
ˆ ˆ ˆ( )( )k k k

k

H c c s s      , 

1/2
2

k ke ed
V

 
   

 
      ( ˆ k k kn a a ,     

1

ˆ ˆ
 

 z z
n

n N

s s ,     
1

ˆ ˆ 

 

  n

n N

s s ), 

(5.1) 

where, to simplify notations and calculations, the states of photons are numbered with one 

index ( , )k k  , the dipole moments of atoms are assumed to be the same, and therefore the 

coefficient k  does not depend on n . 

The system state will be described, according to (3.1), with average values of operators  

ˆ ˆ k kn ,       1
ˆ ˆ  zs ,      2

ˆ ˆ ˆ   s s ,     (5.2) 

which are denoted by a :  k kn , 1  zs , 2  and will be its RDPs.  

All operators ̂a  from (5.2), as noted in (3.9), commute with themselves and with the 

main contribution to the Hamiltonian 0Ĥ  

ˆ ˆ[ , ] 0a b   ,       0
ˆ ˆ[ , ] 0aH   , (5.3) 

since, in particular, 

 ˆ ˆ ˆ[ , ]z
n n n nns s s 

    ,   ˆ ˆ ˆ ˆ ˆ[ , ] ( )z
n n n n n nn nns s s s s   

        ,   ˆ ˆ[ , ] 0n ks n  ,   ˆ ˆ[ , ] 0k kn n   . (5.4) 

Relations (5.3) show that the Dicke model is a special case of the PYa model of the theory of 

non-equilibrium processes. The quasi-equilibrium SO q  of the Dicke model taking into 

account all degrees of freedom can be written in the form 

   q qb qm ,   
ˆ   b k kk

Z n

qb e ,    1 1 2 2
ˆ ˆ    

  m Z Z
qm e , (5.5) 

where qb , qm  are the contributions of degrees of freedom of bosons (photons) and matter. 

Functions ( )b kZ , 1 2( , )m Z Z , ( )k kZ n , 1 1 2( , ) Z , 2 1 2( , ) Z  in these expressions are 

determined by formulas 

Sp 1 qb ,     Sp 1 qm ;      

ˆSp qb k kn n ,     1 1
ˆSp   qm ,    2 2

ˆSp   qm . 
(5.6) 

Exact calculations of average values of the functions of spin operators with SO qm  are 

impossible because the operator 2̂  in (5.2) is a quadratic form of spin operators (see [17] 

and Section 4).  
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However, calculating the averages is possible with a quasi-equilibrium statistical 

operator  

0 00 0
11 1

ˆˆ0
z
nn

Z sZ
q e e

       ;     0Sp 1 q ,    0
1 1

ˆSp  q  (5.7) 

is possible (see [Із] and section 3) and the last two formulas give specific expressions for the 

functions 

  0 0
1( )Z ,        0

1 1( )Z  . (5.8) 

A way out for implementing the formalism of the PYa model in the theory of superradiance 

was proposed in our work [18], where instead of describing the state of the system with 

parameters 1 2,   we limited ourselves (along with its description at arbitrary values of 1 ) 

to consider only the states with a parameter 2  that  differs from the average value in the 

state with the statistical operator 0q  by a small amount (deviation) 2   

0
2 2 20 2

ˆSp( )qm q             ( 0
20 2

ˆSp   q ;   2 ~  ,   1  ). (5.9) 

As a result, the quasi-equilibrium SO qm  satisfies the equations 

0
1

ˆSp( ) 0qm q    ,       0
2 2

ˆSp( )qm q     ,      0Sp( ) 0qm q   , (5.10) 

which follow from the definitions (5.6), (5.7), and (5.9). When 2  is small, statistical 

operators qm  and 0q , which are given by formulas (5.5) and (5.7), differ little from each 

other and values 
0 , 0

1 1Z Z , and 2Z  are small. Therefore, from formulas (5.10) the 

quasi-equilibrium SO qm  can be found in the form 

0 0 2
1 2

ˆ ˆ( ) ( )qm q q F A B O         . (5.11) 

where , ,F A B  are values of the 1st order in  . Substituting expression (5.11) into equation 

(5.10) gives a system of equations for the coefficients , ,F A B  

1 11 12 0F x A x B x   ,     2 12 22 2
ˆF x A x B x    ,      1 2 0F Ax B x    (5.12) 

where notations are introduced 

ˆ
a ax    ,         ˆ ˆ

ab a bx     ;        0ˆ ˆSp qS S    . (5.13) 

Here and further, we leave the notation from Section 3 of the average value of an arbitrary 

spin operator by Ŝ  , although 0q  is a special case of SO 0  (see (4.9), (5.7)). 

Equations (5.12) lead to such expressions for the values , ,F A B  

12
22

11 22 12

y
A

y y y
 


,       11

22
12 11 22

y
B

y y y
 


,      2 11 1 12

22
12 11 22

x y x y
F

y y y


 


 

 

( ˆ ˆ ˆ ˆ
ab a b a bу         ). 

(5.14) 
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Thus, formulas (5.5), (5.11), and (5.14) give the quasi-equilibrium SO q  of the system in 

the form of expansion in powers of  . 

According to (3.4), (3.14), and (3.15) with taking into account (5.3), the time equations 

for RDPs a  of the system state and its SO in the form of expansion in the powers of 

interaction 1Ĥ  have the form 

( ) ( ( ))   t a at L t ,    

   
0

3
1 12

1 ˆ ˆ ˆ( ) Sp [ ( ),[ , ]] ( )


        a q aL d H H O ,    0

1 1
ˆ ˆ( )

L 
 

i
H e H ; 

0

2

1
ˆ( ) [ , ( )] ( )



         q q

i
d H O . 

(5.15) 

Here, it is taken into account that the first-order contribution to ( )aL  is zero, since 

according to (5.3) and (5.5) 1
ˆ ˆSp [ , ] 0  q aH . 

The time equations in terms of RDPs 1 2, , kn  

1 2( , , )   t k k kn L n ,     1 1 1 2( , , )    t kL n ,    2 2 1 2( , , )    t kL n     (5.16) 

when considering small correlations in the system, respectively (5.9) have the form 

1 20 2( , , )     t k k kn L n ,      1 1 1 20 2( , , )      t kL n ,    

20
2 2 1 20 2 1 1 20 2

1

( , , ) ( , , ) 


           


t k kL n L n . 

(5.17) 

Decomposing functions 1 20 2( , , )    а kL n  in a 2  power series 

2
1 20 2 0 1 1 2( , , ) ( , ) ( , ) ( )           a k a k a kL n L n N n O ,   (5.18) 

we obtain the set of time equations of the theory in the linear approximation by 2  

2
0 1 1 2( , ) ( , ) ( )        t k k k k kn L n N n O , 

2
1 10 1 1 1 2( , ) ( , ) ( )         t k kL n N n O ,    

                    20
2 20 1 10 1

1

[ ( , ) ( , )] 


      


t k kL n L n  

220
2 1 1 1 2

1

[ ( , ) ( , )] ( ) 


      


k kN n N n O . 

(5.19) 

The presence of the first term in the third equation requires research whether the value 2  

will remain small over time. 

6. Calculation of the elements of Dicke model dynamics 

To calculate the right-hand sides of the equations for RDPs ( )aL  according to (5.15), a 

quasiequilibrium SO is required, which is given by the formulas 

   q qb qm ,       0 0 2
1 2

ˆ ˆ( ) ( )        qm q q F A B O . (6.1) 
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The issue of calculating averages with a statistical operator 0
q  was actually discussed in 

Section 3, where the more general SO 0  was considered, for which 0
1

0
0   

nq h Z  (see 

formulas (4.9), (5.7)). qb  in (6.1) is the quasi-equilibrium SO of the photon system 

ˆ   b k kk
Z n

qb e ;    

Sp 1qb  ,      ˆSp qb k kn n ;     1( 1) kZ
kn e ,     ln(1 )


   kZ

b k
e  

(6.2) 

(see (5.5), (5.6)). Averages with SO qb  are calculated using the Wick`s rules with 

elementary couplings 

 
(6.3) 

For further use of the quasi-equilibrium SO q  (6.1) with accuracy up to and including 

contributions of the first order of  , coefficients , ,F A B  should be calculated based on 

formulas (5.13) and (5.14). For our case 1/ 2s  , from (4.27), (4.28), and (4.31) we have 

 

1 1
ˆ ˆ       z

n

n

x s bN ,  

1 2

1 2 1 2

2 2 2
11 1 1 12

, ,

ˆ ˆ ˆ ˆ ( )             z z
n n

n n n n

x s s b b b N b N , 

1 2

1 2 1 2

2 2 12
ˆ ˆ ˆ (1 f )2 2(1 f )            n n

n n n n

x s s b bN ,  

1 2 3

1 2 1 2 3

2

12 1 2 2 1 12 13
ˆ ˆ ˆ ˆ ˆ ˆ ˆ 2(1 f ) [ ( f ) ]z

n n n

n n n n n n

x s s s b b b                      

2 2 2 22(1 f )[ ( f ) ] 2(1 f ) (1 f )( f )         b N b b N b N b b N , 

1 2 3 4

1 2 3 4

22 2 2
ˆ ˆ ˆ ˆ ˆ ˆ

n n n n

n n n n

x s s s s            

1 2 3 4

2 2 2

12 23 34 12 34 23[ 4(1 f ) f 4(1 f ) ( )
n n n n

b b b              

2 2

14 23 34 14 34 234(1 f )f ( ) 4(1 f ) f ]b b b            

 

1 2 3 4

2 2 2 2

12 34 23 14 23 34 14 34 23[4(1 f ) ( ) 4(1 f )f ( ) 8(1 f ) f ]
n n n n

b b b b b                 

2 2 24(1 f )(1 2f ) 4(1 f )(1 2f ) 8(1 f ) f b N b N bN        , 

 

(6.4) 

(here denoted 
1 212 n n   …), where according to (4.15), (4.18), and (4.24) 

1
th

2 2

h
b  ,     

( )b h
b

h


 


,     1f ( 1)he     (6.5) 

with 0
1 h Z . However, we do not actually need these expressions since the average 

1 1
ˆ     is a RDP in our description of the Dicke model dynamics. Therefore, formulas  
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1 / b N ,     f (1 2 ) / 4  b b ,     21/ 4  b b , (6.6) 

are much more useful(see the first line in (6.4) and (4.25), (4.26)), which express all average 

values of an arbitrary spin operator ˆ S  through RDP 1  and the number of atoms (emitters) 

N . Values necessary for calculating coefficients , ,F A B  based on formulas (5.13) and 

(5.14) according to (6.4) have the form 

11y Nb ,    12 (1 f )( f )y N b b   ,   

  2 2 2

22 4(1 f )[ 2(1 f )f (1 2f ) f ] 4(1 f )f y N b b b N b         . 
(6.7) 

Further analysis of coefficients , ,F A B  and their use in quasi-equilibrium SO will be 

discussed in the next paper. However, our description of nonequilibrium states of the Dicke 

model by parameters 1 , 2  (see (5.2) and (5.9)) can be considered implemented. 

Let's proceed to the derivation of time equations for the RDPs of the Dicke model. The 

right-hand side ( )aL  of the equations for RDPs has the form (5.15). Let's limit ourselves to 

contributions of the second order by interaction, additionally neglecting small correlations 

2  in them. At the same time, the quasi-equilibrium SO q  according to (6.1) is taken in 

the form 0  q qb q , that is, the expression will be calculated 

0
0

0 1 12

1 ˆ ˆ ˆSp [ ( ),[ , ]]


      a qb q aL d H H        ( ̂a :   ˆ
kn ,  1

ˆ ˆ  zs ,  2
ˆ ˆ ˆ   s s )     (6.8) 

Note that the Hamiltonian of the Dicke model has the form (5.1). 

Using the differential equation method, it is easy to prove formulas 

0 0
ˆ ˆ  

  
 k

i i
H H

i
k ke c e c e ,     

0 0
ˆ ˆ  

   k

i i
H H

i
k ke c e c e , 

 

0 0
0

ˆ ˆ

ˆ ˆ
  

  

i i
H H

i
n ne s e s e ,        

0 0
0

ˆ ˆ

ˆ ˆ
  

   

i i
H H

i
n ne s e s e , 

(6.9) 

from which we find the expression 

0 0

1
ˆ ˆ ˆ( ) ( )( )k ki i i i

k k k

k

H c e c e s e s e
                 (6.10) 

that is necessary in (6.8). Simple calculations give also  

1
ˆ ˆ ˆ[ , ] ( )( )k k k kH n c c s s      ,     1

ˆ ˆ ˆ ˆ[ , ] ( )( )z

k k k

k

H s c c s s       . 

1
ˆ ˆ ˆ ˆ ˆ ˆ ˆ[ , ] 2 ( )( )z z

k k k

k

H s s c c s s s s        , 
(6.11) 

which creates the basis for further calculations since 

0
0

0 1 12

1 ˆ ˆ ˆSp [ ( ),[ , ]]


     kn qb q kL d H H n ,      (6.12) 
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0
0

10 1 12

1 ˆ ˆ ˆSp [ ( ),[ , ]]


     
z

qb qL d H H s , 

0
0

20 1 12

1 ˆ ˆ ˆ ˆSp [ ( ),[ , ]] 



      qb qL d H H s s . 

Very cumbersome calculations based on (6.8) can be simplified by a method, the 

essence of which is shown below. For the right-hand side of the equation  
kt k nn L we use 

0 0

0
0

0 2

1
ˆ ˆSp [( )( ),            

  



        k k

k

i i i i
n qb q k k k

k

L d c e c e s e s e  

ˆ ˆ( )( )]     k k kc c s s  

0 0

0
0

2

1
ˆ ˆSp [( ) ( ) ,            

  



        k ki i i i
qb q k k k A B

k

d c e c e s e s e  

ˆ ˆ( ) ( ) ]     k k k C Dc c s s  
0

0

2

1
Sp 



        qb q k k

k

d  

0 0ˆ ˆ ˆ ˆ{( ) ( ) [( ) ,( ) ]               
     k ki i i i

k k C k k A B Dc c c e c e s e s e s s  

 
0 0ˆ ˆ ˆ ˆ[( ) ,( ) ]( ) ( ) }

              
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k k A k k C B Dc e c e c c s e s e s s  
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2

1
Sp 



        qb q k k

k

d  

0 0ˆ ˆ ˆ ˆ{( )( )[( ),( )]               
     k ki i i i
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(6.13) 

where the relation  
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and commutativity of photon operators and spin ones are taken into account. 
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and for that of the equation 2 2  t L  
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Calculating the commutators in expressions for 0aL  above 
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(6.17) 

and then photon averages according to Wick’s rules, we obtain 
0

0 2
0 2

1
Sp



     kn q kL d  

0 0ˆ{{ (1 )}2 ( )
         

     k ki i i iz
k ke n e n s e e  

  

0 0ˆ ˆ ˆ ˆ( )( )( )}k ki i i i
e e s e s e s s
                , 

 
0

0 2
10 2

1
Sp



      q k

k

L d  

0 0ˆ{{ (1 ) }2 ( )
         

    k ki i i iz
k kn e n e s e e  

 
0 0ˆ ˆ ˆ ˆ( )( )( )}

                k ki i i i
e e s e s e s s , 

(6.18) 
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Final calculations of spin averages with a quasi-equilibrium distribution 0q  in the right-
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(6.19) 

where relations are taken into account  
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(6.20) 
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which follow from (4.27) and (4.28). Formulas (6.6), (6.19), and (6.20) display that the right-

hand sides 0aL  of time equations for RDPs are expressed through the degree of excitation of 

atoms 1  and their quantity N .  

In the previous formulas, we used the periodic boundary conditions. В попередніх 

формулах нами використані періодичні крайові умови. Therefore, in (6.19) in the sums 

over k  it is necessary to perform a limit transition with taking into account the expression 

(2.11) for 



k
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 (6.21) 

(V  is a field volume, ( )



k

n  is some function) considering that the electromagnetic field 

covers the entire space.   

The integrals over   in (6.19) are also taken because  
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That is why, finally, the right-hand sides of the equations for RDPs take the form 
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(6.23) 

where the spin averages are given in (6.20). Functions (6.23) in accordance with (6.19) 

determine the dynamics of the RDPs 1,



k

n  without taking into account small correlations 

2  between atoms, and also allow to investigate under which conditions the parameter 2  

remains small over time. Consideration these issues and the role of correlations in the 
dynamics of the Dicke model will be the subject of the next work. 

7. Conclusions 

In the paper the construction of the Hamiltonian for the quantum system of atoms and 

the electromagnetic field is analyzed for the case of atom system, dimensions of which are 

much smaller than the characteristic wavelength of atom emission. In such approximation the 

system Hamiltonian does not depend on atom coordinates. Atoms are considered in the two-
level approximation and interact with field via dipole-electric mechanism, and this leads to 

the Dicke model [1]. In it, the notion “electric dipole moment of atom” is used despite its 

average value in the atom eigenstates are zero. The correct formulation is that the interaction 
contains the dipole moment operator in the two-level atom space. Our study shows that the 

system of atoms in the Dicke model behaves as a system of fixed in the space particles with 

spin 1 / 2s , which interact with photons. 



Dynamics of a system of two-level emitters in the Dicke model taking into account small correlations between them 

 109 

The leading idea of our work is applying Bogolyubov reduced description method to 

non-equilibrium states in Dicke model dynamics with using Peletminsky–Yatsenko method 
scheme. The сourse of the Dicke superradiant process is highly dependent of the initial state 

of the system. In the specified method this aspect is analyzed with effective initial conditions 

for the Cauchy problem. In this paper, the detailed derivation of the integral equation for such 
conditions is presented. 

The Peletminsky–Yatsenko approach operates with a quasi-equilibrium statistical 

operator q  depending on reduced description parameters, and the simplest operator 

describing correlations in atom subsystem 2̂ , which is the quadratic form of spin operators, 

makes it impossible to calculate necessary averages. In this paper, the development of our 
previous ideas of overcoming the corresponding difficulties through the consideration of the 

small deviation 2 2 20     of the RDP 2  from its value at using only the linear form of 

spin operators. In the present paper the calculation of q  in the perturbation theory by 2  is 

simplified. This theory implemented in the technique of calculations with spin operators. 
We gave the underlined attention to applying the achievements of the theory of spin 

(magnetic) systems. Our work includes some improvements of the results of [16] concerning  

the calculation of averages for operators, which are products of operators ˆ ˆ, z
n ns s  ( n  is an 

atomic number, 1 n N , N  denotes the quantity of atoms). Averages were calculated in 

the state described as a spin system in an external field that proved to be equivalent to the 

system of atoms with fixed excitations nh . We obtained a simple formula reducing the 

averaged value of the product of a certain number of operators to the products of one less 

operator quantity. As a result, all averages can be expressed via averaged products of ˆz
ns  

operators. Herewith the averages 
1

ˆ ˆ... 
m

z z
n ns s  are expressed through the function ( )b h  and its 

derivatives and ˆ ( )  z
n ns b h  according to the definition.  

For our study of the Dicke model, the spin 1 / 2s  case is important. It is proved that in 

this case the necessary function from the reduction formula is expressed through the function 

( )b h  and the identity 21/ 4  b b  is true. The aforementioned developments in the theory of 

spin systems actually make it possible to implement the theory of non-equilibrium states of 

the Dicke model of superradiance in the framework of the RDM in the final sections of our 

paper. 
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