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The reduced description method proceeds from Bogolyubov’s idea that at large times the non-

equilibrium system evolution can be described with the limited number of parameters and principle of 

correlation weakening. The way to the right choice of such parameters and constructing the time evolution 

equations for them was opened by the works of Kharkiv school in statistical physics. A quarter of a century 

ago at Dnipropetrovsk National University the developed method was first applied to the Dicke system of 

two-level emitters interacting via electromagnetic field. The paper presents a short review of the results 

obtained.  They include the analysis of Dicke Hamiltonian structure, the choice of reduced description 

parameters satisfying the Peletminskii – Yatsenko scheme conditions, the realization of this scheme for 

concentrated and prolonged Dicke systems resulting in the temporal equation for emitter subsystem 

statistical operator. The reduced description method possibilities are illustrated with using the effective 

Hamiltonian concept, in particular taking into account emitter motion and higher correlations. 

Reformulating the theory in terms of electromagnetic field allowed to construct the electrodynamics of 

medium formed by two-level emitters with considering binary correlations of field variables and to put 

forward the problem of correlation development picture. A new method of investigating correlations in 

quasispin subsystem with using ferromagnetism theory approach was also proposed. 
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1. Introduction 

Since the early 2000-ies a few scientists of the Quantum Macrophysics Department 

started investigating the Dicke model of a quantum system of two-level emitters interacting 

via electromagnetic field. In the pioneer paper by Dicke [1], it has been shown proceeding 
from the analysis of the quantum state evolution that such a system reveals an unusual way of 

relaxation from the excited state to the ground one. In this process, the self-organization in 

the emitter system takes place and the radiation energy is emitted in the form of a short 

coherent pulse. Unlike the laser mechanism of the coherent generation, when a stimulated 
emission in the resonating cavity provides the necessary effect, the phenomenon predicted by 

Dicke is based on the spontaneous emission and does not need any resonator. It paves the 

way to the coherent electromagnetic wave generation in the frequency range where mirrors 
are absent, namely X-rays and even γ-radiation [2]. In the case of Dicke superradiance, 

opposed to such quantum phenomena as superfluidity and superconductivity, the theory 

prediction was ahead of experimental observations, the first of which dates to 1973 [3]. The 
prospects of military application aroused great interest tosuperradiance study in 1980-ies, but 

the general scientific value of this phenomenon as the most non-trivial example of relaxation 

process is the main basis for the development of research work concerning superradiant 

systems. Several advanced theoretical methods were created in connection with the problem 
of coherent spontaneous electromagnetic emission. Both equilibrium and nonequilibrium 

properties of the Dicke model were studied. The analogous phenomena in acoustics were 

under consideration as tools for obtaining some information about crystals and controlling 
their states [4]. The dynamics of Dicke model was investigated with different approaches: 

collective operators (the case of a concentrated system, i.e. with linear dimensions much less 

than the wavelength of generated emission) [1], correlation development consideration 

(applicable for anextended system) [5], Markoff kinetic equations with projection operator 
method [6, 7]. Bogolyubov method of boson variable elimination [8, 9] proved to be very 

effective in the superradiance theory development. In this method, the electromagnetic field  
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plays the role of a bosonic thermostat. Thus, another method (also connected with N. N. 

Bogolyubov’s ideas) seemed to be an attractive tool for studying the Dicke process. We mean 
the reduced description method in the formulation of Kharkiv scientists S. Peletminskii and 

A. Yatsenko where the variable circle can be expanded. In this method, the kinetic equations 

for a nonequilibrium system are constructed from the condition that at large times the system 
state is described with a restricted quantity of variables. The program of such investigation 

was put into life and this paper presents the review of the obtained results. 

2. Hamiltonian structure of the Dicke model 

The most general structure of the Dicke Hamiltonian is  

m f mf
ˆ ˆ ˆ ˆH H H H    (1) 

where index m denotes the emitter subsystem – matter, f – boson field, mf relates to their 

interaction. The Hamiltonian of two-level emitters can be written with Pauli matrices σz 

multiplied by 2 (  is an operation transition frequency). If electromagnetic field is under 

consideration, the operator of the boson field has the form 

f

,

ˆ ( , )k kH c c ck k
 



     k k

k

k  
(2) 

including usual bosonic operators numerated with photon momentum k and polarization α. 

The problem of correct matter-field interaction description requires special attention. 

Constructing the interaction Hamiltonian proceeding from the generalized momentum 

p A
e

c
  for a non-relativistic particle with a charge e in the field described with vector 

potential A  faces the question concerning the gauge invariance of results and omitting the 

term proportional to 
2A  [9]. These problems were discussed in detail in the monograph [10] 

with the affirmation about some contradictions between the results obtained with dipole 

approximation x E  Hamiltonian and with p A  Hamiltonian using the Coulomb gauge of 

electromagnetic field. Such difficulties were overcome in our paper [11] based on the 

fundamental Lagrangian formulation of classical electrodynamics and further quantization 
procedure. We considered the system of one-electron atoms (numerated by index a) in an 

external electromagnetic field  , A . Its Lagrange function after an obvious expansion in a 

series in electron radius-vectors x
ae  relative to the atomic nucleus takes the form 
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 (3) 

where M and m are atom nucleus and electron masses, ua  and uae are a-th atom nucleus and 

electron (relative) velocities, correspondingly, n and l are vector indices. Notice that in (3) 
electron charge equals – e, hence a nucleus charge is e. This expression leads to the Hamilton 
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function, which, when using generalized momenta 
 ,n a

a a ael

al

te
M

c


 



A x
p u x

x
 and 

 ,p u A xae ae a

e
m t

c
   as well as atom dipole momentum 

a aee d x , has the form 

 
2 22

1 ,
2 2

p p
d E x

x

ae a
a a

a a aae

e
H t

m M

 
      

 
    (4) 

if vector potential A is considered equal to zero. Though we obtain the dipole approximation, 
its substantiation is invalid in the usual weak relativistic assumption 

   , 0, , 0.A x xt t    The possible application of the Coulomb gauge  , 0t x , 

 div , 0t A x  results in the Hamilton function 

 
 

22 2
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,1 1 1
,

2 2

a
ae a a al

a aae al

te e
H t

m c M c

    
              
 

A x
p A x p d

x x
 (5) 

containing vector-potential derivatives. 
Substituting operators for classical dynamical variables, we come to the Hamilton 

operators 1 2
ˆ ˆandH H  for quantum particles in a classical field. The evolution of systems with 

such Hamiltonians is described by Liouville equations 

ˆ , . 1,2n
n n

i
H n

t


    
 

 (6) 

We have shown that statistical operators 1 2i   are related by unitary transformation 

           †
1 2

ˆ ˆ ˆ ˆ, exp , .ae a

a

e
t U t t U t U t i t

c

 
      

 
x A x  (7) 

This fact confirms the equivalence of the Hamiltonians of two types and is ensured by 

equality  

       †
1 2

( , )1ˆ ˆ ˆ ˆ .a
a

a

t
H t U t H t U t

c t


  




A x
d  (8) 

Since in the Coulomb gauge 
( , )1

( , ) a
a

t
t

c t


 



A x
E x , we can use the more convenient 

Hamiltonian form (4) in the quantum picture. The right analysis based on the Hamiltonian of 

p A  type (5) requires using the statistical operator 2  and transformed physical variable 

operators      †ˆ ˆU t O t U t  [11]. 

The next problem is the interaction term mfH  view in the Dicke Hamiltonian. 

Restricting ourselves with two-level objects, we must find the matrix elements of the operator 

ˆ ˆ ( , )ae a aH t  d E x , (9) 
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for which the matrix elements of the operator ˆ
ad  in the space of eigenstates of the operator 

m
ˆ

aH , i.e. , , ,a a  , are necessary. The results for an arbitrary emitter are 

ˆ ˆ ˆ ˆ, , 0, , , 0, , , , , ,a a a a a aa a a a a a a a            d d d d d d . (10) 

The diagonal matrix elements are zero because ˆ
ad  is an odd operator and eigenstates have 

certain parity. Non-diagonal matrix elements are complex conjugated vectors with the same 

modulus for all atoms and an arbitrary phase because of this value arbitrariness in each atom. 

Their space orientation is also arbitrary if there are no reasons for a selected direction of the 

quantization axis. In literature, the proposed form of ˆ
ad  is r x i y  d d  where ,r id d  are 

certain real vectors to be concretized in each case [12]. We propose a more perfect form:  

ˆ ai
a ax ad e


 d n  (11) 

where an  are randomly oriented unitary vectors. The rotational invariance of their 

distribution will be taken into account further. The phase of dipole moment oscillation is an 
important parameter in the classical picture of superradiance, but in the quantum 

consideration the only vector an  seems to be enough. 

Omitting kinetic energy of emitters, we write the final view of Dicke Hamiltonian as 

   D

,

ˆ ˆ ˆ ˆ ˆ2 t
az ax a a k

a

H R R c c
 



       k k

k

d E x  (12) 

using Dicke quasispin operators 
1ˆ , ( , , )
2

al alR l x y z    [1] and transversal electric field 

operator 

   
1 2

,

2ˆ ( ) ( )t i ik c e c e
V

    
   



  
  

 
 k x k x

k k

k

E x e k e k  (13) 

where the complex polarization vectors ( )e k  correspond to the circular field polarization. 

3. Reduced description parameters for the Dicke model 

The reduced description method (RDM) is based on the idea that at large time the 

statistical operator (SO) of a nonequilibrium system ( )t  can be regarded as a function of the 

restricted number of observables – reduced description parameters (RDPs)  : 

0
0( ) ( ( , ))

t
t t


    , and then the relation 

0
0

ˆSp ( ) ( , )a at
t t


     is valid (here and 

in equations (14) – (18) a numerates RDPs). In this case, we can describe the system 
evolution with differential equations for RDPs  

0 0( , ) ( ( , ))t a at L t      ,            ˆˆ( ) Sp ( )a aL L      (14) 

proceeding from the Liouville equation 

0 0
ˆ ˆ( ( , )) , ( ( , ))t

i
t H L t          

 
 (15) 
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where Ĥ  is a system Hamiltonian. Sincethe transition to the reduced description takes place 

at large time, the right initial values for RDPs should be chosen (see [13]). 

Constructing the real evolution picture in this framework is possible if we deal with a 
system including well-studied subsystems with relatively weak interaction between them (

0
ˆ ˆ ˆH H V  ). The limiting form of the RDM Hamiltonian is a quasi-equilibrium one 

 (0) ˆ( ) exp ( ) ( )a aa
Y        ensuring the equalities (0)ˆSp ( )a a     and 

(0)Sp ( ) 1   . Such requirements result in the integral equation 

0 0

0
ˆ ˆ(0)( ) ( ) ( )

iH iHici d e f e e
  



         (16) 

to be solved in the perturbation scheme 
( )

0

( ) ( )n

n





      using V̂  ~ λ as a small parameter. 

Eq. (16) assumes the existence of the algebra of observables playing the roleof RDPs  a , 

which obey the condition 
0

ˆ ˆ ˆ[ , ]a ab bb
H c    where cab are C-numbers, matrix c  is present 

in (16). There also the operator function 
( )ˆ( ) , ( ) ( )aa

a

f V i L
 

      
  

  is used [14]. 

Such method is known as Peletminskii–Yatsenko scheme [15]. The corresponding expansion 

for ( )aL   provides constructing the kinetic equations for RDPs: 

(0) (1) (2)( ) ( ) ( ) ...t a a a aL L L          (17) 

where 
(0) ( )a ab bb

L i c   , 
(1) (0) ˆ ˆ( ) Sp ( ) ,a aL i V     

  , 

0 (1)
(2) (0) ( )ˆ ˆ ˆ ˆ( ) Sp ( ) ( ), , a
a a bb

b

L
L d V V i



  
              

 . 

(18) 

These terms are enough for our further calculations. 

In Dicke model studies the most interesting and important for practical applications 

phenomenon is a superradiant pulse. The stored energy is emitted during a very short time. 
The pulse duration is many times shorter than the delay time – between the pumping 

irradiation light emission at the frequency of the operation transition. Electromagnetic power 

is liberated very quickly and leaves the Dicke system. Such a process is very complicated for 
description. Thus, it is expedient to fix this process via changes in the system of emitters. It is 

a system with much less degrees of freedom – “slow” system in Bogolyubov’s terms. In 

emitter subsystem, a very fast change of the total difference of occupancy numbers of excited 

and ground level corresponds to the pulse emission. The most natural RDP in this problem is 
ˆ ˆ .z az

a

R R  Since for the Hamiltonian (12) 0

,

ˆ ˆ
az k

a

H R c c
 



     k k

k

 is the main part, 

the Peletminskii–Yatsenko condition 0
ˆ ˆ[ , ] 0zH R   is satisfied trivially. If we are interested in 

correlations between emitters, the physical value with operator ˆ ˆR R 
 should be considered 

(denotation ˆ ˆ ˆ( )ax ay

a

R R iR   ). Obviously 
2 2ˆ ˆ ˆ ˆ ˆ
x y zR R R R R     . For the concentrated 
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model (with dimensions much less than the emitter wavelength) considered in the 

fundamental paper by Dicke [1] 
2 2 2ˆ ˆ ˆ
x y zR R R   is the motion integral, hence the maximum of 

the spontaneous emission reached at the moment of the maximal correlation coincides with 

the zero value of zR . Notice that we can use 0
ˆ ˆ ˆ[ , ] 0H R R   , ˆ ˆ ˆ[ , ] 0zR R R   . Processes in a 

prolonged system, their spatial development and behavior of higher correlation functions 
require more thorough investigation. 

The most complete information concerning an emitter subsystem is provided by its 

statistical operator. Such a program was put into life in our first papers on the Dicke model 

[16, 17]. For the Hamiltonian (12) m  was chosen as RDP for the totality of emitters and the 

energy of photon bath fE  played this role for the field subsystem. The regular procedure of 

the RDM (14) – (18) gave the temporal equations of the described structure for RDPs: 

 
    m 0

m m 0 f 0

,
, , ,

t
L t E t

t

 
   


, 

 
    f 0

f m 0 f 0

,
, , ,

E t
L t E t

t

 
   


. 

(19) 

Then we dealt with mL  and fL  expansions of perturbation theory in interaction powers. Since 

the terms (1)
mL  and (1)

fL  proved to be zero, we obtained the substantiation that superradiance is 

a 2nd order effect. The fact that the term 
(2)

fL ~ 0V while fE  is proportional to V justifies the 

assumption f const.E   Hence we applied the concept of equilibrium photon thermostat at a 

temperature T. In terms of emitter subsystem, the system evolution is described by the 

equation 

    

   

0

(2) †m
m m 0 f m

†

m

1
, , { ,

, 1 } . .k

k k k

k

i

k k k

i
L t E A A n

t V

A A n e d h c



 


        

       

 
 (20) 

where  kA   are atomic operators ininteraction presentation  
m m

i i
H H

k kA e A e
  

  , kn  are 

average photon occupation numbers  B1 1k k T

kn e


  , and Bk  is Boltzmann constant. 

h.c. denotes Hermitian conjugation here and further. In this presentation we made use of 

collective operators †
kA , Аk. Their view in the case of the concentrated model (12) is 

   

   

1 2

,

1 2† †
,

ˆ2 2 ( ) ,

ˆ2 2 ( ) .

k ax k a

a

k ax k a

a

A A R d

A A R d


 

 

     

     





k

k

n e k

n e k
 (21) 

Ignoring the problem of polarization and introducing an averaged interaction constant kg , we 

come to  †
k k kA A g R R    and summing over k in (20). At this stage it is possible to 

pass to prolonged systems, which are important in real experiments where the shape of the 

emitter subsystem determines the generated pulse direction. Account of the spatial 
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localization of emitters is realized through introducing collective operators with 

corresponding factors:  
1

exp
N

a a

a

R R i 



  q q x . Then atomic operators acquire the view 

    * *

k kA g R f R f     q q

q

k q k q  (22) 

using so called diffraction functions  
1

ai

a

f e
N


 

k x
k  [7, 17]. Thus, in the RDM framework 

the equation for emitter subsystem SO 
mρ  (“Master equation”) has been obtained [16]. At 

some assumptions (initial vacuum state of the field, excluding quickly oscillating terms) it 

coincides with the results of [7] where the physically adequate results were obtained for a 
“pencil-shape crystal”. 

RDM opens the way to investigating field behavior. The method of boson variable 

elimination [8] did not raise such questions. RDPs that should be involved in the scheme with 

this end in view are occupation numbers of possible field states and correlation functions of 
boson field under consideration. A special section of the review will be devoted to them. 

4. Some new approaches and applications of RDM in superradiance theory 

Constructing the “Master equation” can be implemented basing on the operation of 

calculating the trace of  t in the space of thermostat states. Then the evolution equation for

 m t  is presented in terms of Liouvilleans  m m m f mf
ˆ ˆ( ) Sp ( )t L t L t      and transformed to 

have a view 

 m
ef m dis m

( ) ˆ ˆ, ( )
t i

H t L t
t


     
 

. (23) 

Here efĤ  – effective Hamiltonian of the emitter subsystem, disL̂  – dissipative Liouvillean 

providing its irreversible evolution. In RDM,   is functionally dependent on m  and fE  

[16]. This determines the Liouville equation for  m f, E  , from which the integral equation 

follows for it using the condition of complete weakening of correlations [17]. 

Correspondingly, the right-hand side of (20) has no terms of 3rd order by interaction constant 

and its error is of the 4th order. 
We obtained the picture of superradiance generation without some restrictions of [7], i.e. 

for an arbitrary boson thermostat temperature and account for antiresonant terms proportional 

to  f k q . The kinetic equation for  m t includes double sums over q and q (both 

belong to the first Brillouin zone B). It was shown in [16] that considering only   q q is 

enough. The final view of operator structures in (23) is 

   *

ef 0

1 ˆˆ ˆ ˆ ˆ ˆ ˆ
2 2

z

B B

i
H R S O R R O R R   

 

 

      q q q q q q q q

q q

, 

dis m m m
ˆ , ,

B

L R R R R     



              q q q q q q

q

 

  m m0.5 , . .R R R R h c   

  
      q q q q q  

(24) 
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with the operator of cooperative polarization of emitters 

0

1ˆ ˆ ˆ ˆ( )
2

zS R R N R   q q q
 (25) 

and functions 

 n   q q ,   1 n    q q
,

 
   

23 2

2

1

2
k kd kg f     


q k q , 

 3 2 2

3 2 2

1

2

k
k

k

P d kg f


  
  q k q ,   3

3 2 2

1 2

4

k

k

n
P d k


 

   , 

 
1

γ
2

O i  q q q ,  
2

3 2

3 2 22

k

k

gi
P d k f


    

  q q k q  

(26) 

using the designation    B1 1k Tn e    . 

One can see the presence of the frequency shift   of emitters connected with their 

interaction with field. Frequencies q  describe collective effects in the system and self-

amplification of certain modes, such frequencies do not depend on the thermostat 

temperature. 
In further such technique was applied to research into superradiant processes with taking 

into account additional factors: atom motions, higher correlation function etc. In [18], a 

generalized Dicke quasispin model of (12) type was considered, it was a system of two-level 

emitters forming a 3-dimensional lattice Q with ν particles in a site. The term mfH  was 

written in the usual form 

 mf

,

1ˆ ˆ ˆ ,H g R c R c
V

    k k k k k

k

  


 (27) 

but collective operators of emitters (Fourier transformed densities of particle quasispins) are 

modified: 
   ˆ ˆ

1 ν 1 ν

ˆ ˆ ˆ ˆ,n ns n nsi i

ns z zns

n Q n Q
s s

R R e R R e
     

 
   

  
k x u k x u

k k
 

(28) 

where n numerates lattice sites and s numerates atoms in them. The displacement in site 

operators ˆ
nsu  are expressed via phonon operators λ λ,a a

q q  for each atom of the lattice through 

the summation over the first zone of Brillouin B. 

 
  

1 2

λ λ

λ
1 λ 3ν

ˆ . . .
2 ω

ni

ns s

B s

a e h c
Nm




 

 
   

 


q x

q

q

u e q
q

 (29) 

The system Hamiltonian should be supplemented with the term corresponding to phonons 

p λ λ λ

λ,

ˆ ω ( ) .H a a q q

q

q  

At the first stage of RDM, we chose the statistical operator of emitter subsystem mρ  as 

well as energies of photon and phonon subsystems Ef and Ep to be used as RDPs for our 

problem. Proceeding from the basic kinetic equation in the form (23) and the assumption of 
equilibrium boson thermostats, we came to the effective Hamiltonian and dissipative term for 
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the emitter subsystem and evolution equations for boson subsystems, in which 

coefficientsdepend on time through  fE t  and  pE t . They are expressed via the Planck 

distribution B

1

1
k

k T

kn e


 

  
 
 

 and van Hove type functions [19]  

      ˆ τˆ

, p p,τ Sp n nsn ns ii

ns n sg w e e
   

  
k x uk x u

k  (30) 

with pw  standing for the equilibrium statistical operator of phonons. 

If we study the Dicke process in a crystal, the conventional approach is investigating the 

behavior of the average value of 
,

ˆ ˆ
zns

n s

R R . Regarding the set of RDPs      f p, ,R t E t E t  

(we shall use for boson subsystem parameters the general notation η  here) and using the 

constructed “Master equation”           m 0 int mdis

ˆ ˆ ˆρ η η ρt L L t L t t   , we obtain the set 

of differential equations 

           ,η , η ,η ,i iR t L R t t L R t t   (31) 

which will be referred to as generalized Rehler – Eberly equations [20]. In RDM scheme 

right-hand sides of (31) acquire the view  

       (2) (2) 4 (2) 4

m int dis q q
ˆ ˆ ˆSp , ρ , ρ ,ηi iL R L L O g L L O g     (32) 

via the iteration procedure for mρ  with a quasi-equilibrium SO qρ  used as a zero-th 

approximation. The problem of calculating averages with it should be solved. 

Aiming to explore correlations between emitters, we come to studying the “Master 

equation” of (23) type with 

  

    

ef 0 int

,

dis m m m m

, ,

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ,

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆρ ,ρ ρ ρ .

zn nn zn zn nn n n n n

n n n

nn zn zn nn n n n n nn n n n n

n n n n

H R I R R I R R R R H H

L A R R B R R R R C R R R R

   

    



       

       

 


      

 
     
 

 

 
 (33) 

Expression for the effective Hamilton operator 
efĤ is close to the theory of an anisotropic 

Heisenberg magnetic [21]. Our assumptions are: intĤ ~ λ, disL̂ ~ λ, λ<<1 is a small parameter. 

We study the stage of emitter system evolution, at which it can be described by RDPs 

  m
ˆSpρ ( )n nR t t R  . (34) 

According to the functional hypothesis, at this stage the statistical operator  mρ t  depends on 

time only through the variables (34):     m mρ ρt R t  (here R means the set of nR
) and the 

Liouville equation for it takes the form 

 
     m

0 int dis m

,

ρ
ˆ ˆ ˆ ˆ ρn

n n

R
L R L L L r

R


  


 




,    m
ˆSpρ n nR R R  .     (



 
 

) (35) 
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Taking into account the Peletminskii – Yatsenko model boundary conditions, we obtain the 

integral equation for the SO  mρ R , which can be solved in the perturbation theory in λ. 

Then the kinetic equation for RDPs  nR t  in the 2nd order in λ appears 

  31 2

1 2 3

1 1 2 2 3 3

1 1 2 2 3 3

1
; , ,

3
t n n n n n n

n n n

R i R W n n n n R R R
   

  

         (36) 

where 
n

  and  1 1 2 2 3 3; , ,W n n n n     are known functions of values entering (33). 

The technique described enables us to consider nonequilibrium fluctuations of quasispin 

variables in the system (36) corresponding to binary correlation functions  

        σσ σ σ σ σ σ σ

' m

1 ˆ ˆ ˆ ˆSpρ
2

nn nn n n n n n ng t P t R R R R R t R t
   

      . (38) 

Here 
nnP  is a projecting operator. Our purpose is to construct a reduced description of the 

system by  σ

nR t  and  σσ

nng t


 as new RDPs. On this way, we must build a closed set of 

equations for  σ

nR t  and  σσ

nng t


  

      σ σ ,t n nR t M R t g t  ,                        σσ σσ ,t nn nng t M R t g t
 

    (39) 

and the statistical operator of the system     mρ ,R t g t . This task was realized in [21] 

through averaging over random initial values  σ 0nR . Theobtained closed setof equations 

coincides with (39) if the projecting operator nnP   in (38) destroys short-range emitter-emitter 

correlations. The 1st of them describes mean quasispin field evolution. The 2nd equation 

describes quasispin field excitations. One can consider 
σ σ

n ng
 

   as a density matrix of 

excitations. For our system of emitters these excitations can be named the Frenkel excitons. 

Thus, kinetic equations for excitons in a usual sense have been obtained [22]. 

5. Reduced description of electromagnetic field in Dicke process 

As we have pointed out above, the possibility of studying electromagnetic field states is 

an important advantage of reduced description method. In general, a quantum field state can 

be presented by the totality of occupation numbers of field modes, but such information is 

redundant. Physically valuable information is obtained through using such field 
characteristics as electric and magnetic component strengths. In quantum theory, operators 

dependent on space and time coordinates correspond to these variables. Their average (in 

quantum sense) values give the picture of field evolution. More precise information about a 
process is presented by correlation functions of different orders of specified variables. 

Thus, Dicke Hamiltonian (12) should be rewritten using relevant field variables. Since 

publishing [23], we put down the Hamiltonian under consideration appealing to notions of 
electrodynamics of continuous media: 

mf
ˆ ˆ ˆ( ) ( )tH d   xE x P x . (40) 

Here ˆ ˆ( ) 2 δ( )ax a a

a

R P x d x x  is the operator of electric dipole moment density of emitters, 

the spatial orientation of ad  is supposed to be uniform. The nonequilibrium state of the field 
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will be described by parameters  η that include the average transverse electric and magnetic 

field strengths μζ  with the operators 

   
1 2

,

,

2ˆ ( )t ik
n nE e c c e

V

  
   



  
  

 
 k x

k k

k

x k , 

    
1 2

,

,

2ˆ ( ) ik
n nB e c c e

V

 
   



  
   

 
 k x

k k

k

x k k  

(41) 

and their binary correlations ( , )   . Here μ and μ' numerate new RDPs, n is a vector index, 

/ ,kk k ( )ne k  corresponds to the linear polarization of modes.  The general definition of 

the binary correlation function of operators â  and b̂  is given by the formula with the 

statistical operator ρ  of the system and their anticommutator ˆˆ{ , }a b  

ˆ ˆˆ ˆ( , ) Sp { , } / 2 Sp Spa b a b a b     . (42) 

The state of the medium will be described by the average density ε( )x of its energy 

ˆ( ) Sp ( )  x x ,    ˆˆ( ) ( )az a

a

R    x x x . (43) 

Introducing the velocity change operator of the quantity with the operator â  in 

Schrödinger picture: ˆ ˆ ˆ[ , ]
i

a H a , we come to Maxwell’s operator equations 

ˆ ˆrotc B E ,     
ˆ ˆ ˆrot 4πnc E B I ,   ˆdiv 0B ,    ˆ ˆdiv 4πρE  (44) 

using the operators of complete electric field ˆ ˆ ˆ4πt E E P  and current 
ˆˆ I P  and charge 

ˆρ̂ div  P  density. The operator equation for medium energy density takes the form  

ˆ ˆ ˆε( ) ( ) ( )t x I x E x . (45) 

In [24], the compact form of evolution equations for averages of field RDPs was 

substantiated 

t i Q    


    c ,      : 0, 4 rotQ c  P  (46) 

where μμ c issome numerical matrix. The equation (50) results in the evolution equation for the 

binary correlation functions for field variables 

1 2 1 1 1 2 2 2 1 2 1 2

1 2

1 2( , ) ( , ) ( , ) ( , ) ( , )              
  

             t i i Q Qc c . 
(47) 

Equations (46) and (47) give a complete set of temporal equations for the RDPs of the 

electromagnetic field in the medium (we will denote all of them as  ηa ). Together with the 

evolution equation for ( ) x , they give the whole picture of the Dicke process taking into 

account binary correlations in electromagnetic field. In this case Bogolyubov functional 

hypothesis view is 
0

( ) ( ( ), ( ))
t

t t t


     with spatially dependent field and emitter 
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variables. Let`s remember that in Dicke model 
0 m f

ˆ ˆ ˆH H H  , hence the Peletminskii – 

Yatsenko requirements are required (see (14) – (18)). The non-diagonal matrix element d of 

the dipole moment operator of an emitter plays the small parameter role. 

In the approach under consideration, the quasi-equilibrium operator of Eq. (16) is  

q f m( , ) ( ) ( )        . (48) 

It was shown [24] that 1storder (in d) contribution to the SO (48) is reduced to 
0

(1)

f m
ˆ ˆ, ( , ) ( , )ti

d d


         
   x E x P x  (49) 

where the time dependence of functions means 

f f
ˆ ˆ

ˆ ˆ( , ) ( )
i i

t t
H H

e e
 

 E x E x , 
m m

ˆ ˆ
ˆ ˆ( , ) ( )

i i
H H

e e
 

 P x P x . (50) 

Drawing on Peletminskii – Yatsenko conditions, we obtain from this the time dependence of  

ˆ ( , )P x and field Fourier component ˆ t

kE , the last depending on 
k . On this basis it is possible 

to calculate the 2ndorder term of average polarization 

0

(2)

f f m m
ˆ ˆ ˆ( ) Sp ( , )Sp ( ), ( , )t

n l n l

i
P d d E P P



        
  x x x x x  (51) 

We have found 

(2) 1
( ) [ ( , ( )) ( , ( )) ]t

n n n

iP e E c Z
V

  k k

k

k x
x k x k x     (52) 

with designations 

2

2 2 2

4
( , ) P

3 k

d 
    

  
k ,     

2

2 2

2
( , ) ( )

3
k

d
    


k . (53) 

The expression (58) can be put down in the form emphasizing that spatial dispersion is its 

physical essence: 

(2) ( ) [ ( , ( )) ( , ( )) ].t

n n nP d E c Z          k kx x x x x x x x  (54) 

In view of 
2~t d  , we should not differentiate ε when calculating current density and 

therefore we obtain similar to (52) and (54) expressions for 
(2) ( )nI x with material coefficients 

2
2

2

2
( , ) ( , ) ( )

3
k k

d
         k k ,

2

2 2 2

4 1
( , ) ( , ) P

3 k

d
       

 
k k  (55) 

Notice that coefficients   and  characterize dielectric susceptibility and conductivity, 

respectively, coefficients λ and   relate spatial inhomogeneity and frequency dispersion. 

Obviously, averaged charge density in the medium is zero in the case of spatial homogeneity.  

Thus, we have constructed electrodynamics of a medium of two-level emitters. Its 
equations are 

rott c  B E ,     rot 4t c   E B I ,   div 0B ,    div 4πρE .           (56) 
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Equations (53) and (55) provide material equations for them. The set (56) is of usual form. 

Since 
nP  is proportional to 2d , a complete field in (63) can be replaced with the transversal 

one. Accepted RDPs are ,t
E B  and their binary correlations, but all obtained equations are 

valid with considered accuracy if we use the complete field for the process description. At the 

same time, material equations do not include binary correlations.  

Putting forward the task to study the medium energy density evolution, we face the 

problem of solving the differential equation for ε (45) using in its right-hand side (2) ( )L x

obtained results concerning andP I . Rather complicated calculations give the expression 

[24] 

 
2 4

3

3

2
( ) ( ( ), ( )) ( ) ( ) ( ) ( )

3
t n n n n

n

d
I E I E n O d

c


     x x x x x x . (57) 

Besides the correlation functions (42) between andI E components and their scalar product, 

Eq. (57) contains the term describing system energy reduction due to dipole radiation, which 

is proportional to the spatial density of emitters 
ε( )

( )n 


x
x . 

6. Correlation functions in RDM 

Pay attention to the fact that our technique provides the possibility of studying the 
behavior of correlation functions in Dicke process. Such functions play a decisive role in 

quantum optics research. Conventional approach to superfluorescencepresumes considering 

the time of pulse delay and the total quasispin evolution. Thus, the process of correlation 
development is an open question. In early paper [25], the superradiance picture with higher 

correlations in emitter subsystem was built in the framework of the method of boson variable 

elimination for a concentrated Dick model. This methodgenerates the chainof linked 
equations involvingmore and more complicated functions. The result of [25] was very 

simple: higher correlation function account does not influence the delay time. At the same 

time numerical experiments demonstrate the exponential growth of correlation functions. An 

analogous problem for a prolonged system has no transparent solution. But RDM gives us a 
chance to simulate the development of correlations of field parameters in an arbitrary system. 

With this end in view, we considered the set of equations describing the evolution of binary 

field correlation function.The choice of RDPs is unlimited though technical difficulties grow 
very quickly. 

In [26], we tried to construct an evolution equation for a binary correlation function (42) 

made of strength parameters of electromagnetic field. Proceeding from the compact operator 
equation form of (46) type 

1 12 2 1

2

ˆ ˆ ˆ4i I    c  (58) 

where 

1
ˆ ˆ( ) ( )n nE x x ,    2

ˆ ˆ( ) ( )n nB x x ;       1 ( ) 0nI x ,      2
ˆ ˆ( ) ( )n nI Ix x  (59) 

(n is a vector index, matrix 12c  coincides with the corresponding one in (46)), we write down 

the equation for a correlation function as 

1 2 11 1 2 22 1 2 1 2 1 2

1 2

( , ) ( , ) ( , ) 4 ( , ) 4 ( , )t i i I I   

 

               c c . (60) 
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In usual notations, the corresponding equations are given by the formulas 

( ) rot ( ) rot ( )x x x x x x
t n l n l l nB B c E B c B E

      , 

( ) rot ( ) rot ( ) 4 ( )x x x x x x x x
t n l n l l n n lB E c E E c B B B I

         , 

( ) rot ( ) rot ( ) 4 ( ) 4 ( )x x x x x x x x x x
t n l n l l n n l n lE E c B E c E B I E E I

            

(61) 

(hereafter for the simplicity ( ( ), ( )) ( )x x
n l n lE B E B

 x x  and so on).  

To find the material equations for evolution equations for correlations one must 

calculate nonequilibrium correlation functions ( )x x
n lB I


, ( )x x

n lE I


. The correlations are found in 

the main (second) approximation in the field-medium interaction, i.e. in dipole moment of an 

emitter d . So, it is enough considering the correlation function ( )tx x
n lE I


.The necessary 

calculations are like those conducted for obtaining (57).  Let’s give the results [26]. 

(2) (2)( ) ( ) ( , ( ))tx x tx x

n l n l nlE I E I S n
     x x x , 

2 2
3

2
( , ) ( )

12

i t

nl nl k

d
S n n d e 

    
 

k x
x k  

(63) 

(2) (2)( ) ( ) (( , ( )))x x x x

n l n l nlB I B I T n
     x x x , 

2 2
3

2 2 2

1
( , ) P

3 2

i

nl nls

s k

cd
T n n e d e

x

 


   
k x

x k . 
(64) 

The presence of the functions ( , )nlS nx and ( , )nlT nx  in (63) and (64) is an interesting 

fact.Their expressions include transversal δ-symbol 2/t
nl nl n lk k k     and Levi-Civita 

tensor nlm . These formulas are necessary supplementsto the equations (61). It is worthto 

emphasize that material equations for correlations do not contain in the considered 
approximation average electromagnetic field. On the other hand, the material equations (53) 

and (55) to Maxwell equations do not contain binary correlations. However, due to the 

specified terms in (63) and (64), these material equations depend on the density of medium 

energy. According to evolution equation for the energy density (57), it is changed under the 
influenceboth the field and its correlations. So, in the case of nonequilibrium medium 

evolution of the field and correlations are connected. Thus, we have built electrodynamics of 

a continuous medium formed by two-level emitters (with fixed positions)taking into account 
binary correlation functionswith accuracy up to 2nd order terms. 

The obtained theory opens the way to the numerical analysis of field correlation 

development in Dicke system, though expected calculations are very complicated. Such an 
attempt was done in paper [27]. Solving the Cauchy problem for the equations of (61) type 

requires material equations in a spatial form using the coefficients (55). Due to the 

representation 

( )1
σ( ,ε( )) σ( ,ε( )) ie

V

    
k

k x x
x x x k x ,

( )1
ξ( ,ε( )) ξ( ,ε( )) ie

V

    
k

k x x
x x x k x  (65) 
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and the transformation that is valid in the thermodynamical limit 3

3
... ...

(2π)

TL V
d 

k

k we can 

obtain the necessary values via integrating in spherical coordinates.If we neglect the Lorentz 

broadening, in integrals over k  k such functions as  δ k c  appear. The results are 

 
 2

2

sin /
σ ,ε( ) ε( )

3π /

cd

c c

 
  

 

x x
x x x x

x x
,

2

2 2

2 ε ( )
ξ( ,ε( )) (1 cos( / )

3π

d
c      

 

x
x x x x x

x x
. 

(66) 

In spite of the rather simple structure of equations (56), (57), (61) and the availability of 

expressions (66), the set of kinetic equations remains very difficult for simulations because of 
the great number of variables, presence of spatial differentiation and integration as well as 

additional terms in (63) and (64). A natural way of simplification is considering a system of a 

smaller number of dimensions. In [27], a one-dimensional (along axis z) crystal was proposed 

for consideration. Dipole moment orientation was also fixed (such supposition may be 

physically substantiated), field amplitude vectors OxE , OyB  and wave vector Ozk . 

Thus, we came to the set of field RDPs ( )xE E z , ( )yB B z , ( ) ( ( ), ( ))x xEE E z E z  ,

( ) ( ( ), ( ))x yEB E z B z  ,  ( ) ( ( ), ( ))y yBB B z B z  . Kinetic equations for them are 

4 ( )t

B
E c I z

z


   


 ,           ,t

E
B c

z


 


 

( ) ( )
( ) 4 ( ) 4 ( )t

E B EB
EE c c IE EI

z z

  
       

 
  ,   

( ) ( )
( ) ,t

EB BE
BB c c

z z

  
   

 

( ) ( )
( ) 4 ( )t

BB EE
EB c c IB

z z

  
     

 
 . 

(67) 

At the first stage of the Dicke process, we may neglect the changes of the emitter subsystem 

energy density and take the fixed value of this parameter. In [28], advanced version of (73) 
was constructed for a two-dimensional system. Real computer simulations are in our plans. 

Another interesting result of the superradiance field behavior analysis with using the 

ideas of electrodynamics of continuous media, which are applicable just at the beginning of 
Dicke arranging, is dispersion relations for waves in Dicke model [29]. We used the material 

equations (55), but considered also the non-uniform broadening, i.e. the coefficients were 

taken in the form 

0

( , ) ( ) ( )ks d w



       k ,
2 2

0

2 1
( , ) ( )P

k

s
d w



     
  k  (68) 

where k ck  , 
2 22 3s d    and, in accordance with [24] 

 
2 2( )

w c 


 

 
,

0

( ) 1d w



    (69) 

Standard electrodynamics procedure for such medium gives the specified equation in the 
view 
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2
2

2
( , ) 0nl n lk u k k

c

 
     

 
k  (70) 

with 
11 4 ( , )

( , )
1 4 ( , )

i
u

    
 

  

k
k

k
. We suppose an isotropic case ( , ) ( , )u u k  k , so the 

vector  E  structure is defined only by the vector k  and can have the longitudinal 
l

E and 

transversal t
E  components. Searching for dispersion laws for them in the form 

( )k i      shows:for longitudinal waves propagation is impossible, but the positive sign 

of  evidences that field energy grows rapidly when ck is close to  ; for transversal waves 

2 ( )sw ck
   and    gives the possibility of calculating their group velocity, which value 

decrease relative to c is proportional to the small parameter s. All results are physically 

convincing and provide the picture of superradiance in classical terms. 

Obviously, correlations in field states are coordinated with some correlations between 
emitters. This connection description is an interesting problem for further investigations. As 

we pointed out above, dynamics of atom subsystem is simpler for modeling because of less 

quantity of freedom degrees. Binary and higher correlation functions naturally arise in 
considering superradiance in prolonged systems and related problems such as self-induced 

phase transitions [30]. Reduced description method opens the possibility to study the 

behavior of quasispin atom operator correlation functions of arbitrary orders via including 

them in RDPs. In [13], we developed these ideas and revealed characteristic problems of such 
approach. Indeed, RDM equations use averages of operators calculated with a quasi-

equilibrium operator with a linear combination of RDPs in the exponent indicator. In the case 

of RDPs, which are linear in quasispin operator, the technique of specified calculations is 
well known, but it is problematic for more complicated operator forms. Thus, it is expedient 

to reduce our calculations to the well-developed technique. It proved to be possible due to 

describing the non-equilibrium statesby the occupation numbers of photon states kn , the 

degree of excitation of the atoms 1η , and a small deviation 2 2 20  = - of the usual 

parameter 2 ( the value of correlations between emitters) from its value 20  when 

describing the system only by the parameters kn  and 1 . If we denote the quasi-equilibrium 

SO for the last case 
(0)  (see (16)), the new form of such SO in our theory considering the 

new small parameter 2 ~ μ<<1 is searched as  

(0) (0) (0) 2
1 2

ˆ ˆ( ) ( )        F A B O  (77) 

where F, A, and B are certain functions ~ μ satisfying the condition 
(0) (0)

2 2
ˆSp( )     . 

The theory using the rules of average calculations for spin systems is applicable for a rather 
long time after the Dicke process begins. It was described in detail in our recent paper [31], 

so we do not replicate this material in the present review. 

 

7. Conclusions 

Dicke model gives a wide field for testing the variable methods of theoretical 
investigations. Owing to prospects of using the superradiance phenomenon in technology and 

scientific research, it attracts the attention of experimenters and theorists for decades. From 

the point of theoretical physics view, such studies made a breakthrough in the theory of 

nonequilibrium processes. The authors were the first who applied in superradiance theory the 
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reduced description method providing many advances, first – including field characteristics 

into consideration. We also proposed an original analysis of the Dicke Hamiltonian forms 
substantiating their relationship with unitary transformation causing the corresponding 

transformations of statistical operators and physical quantity operators (Section 2). The 

nontrivial RDM scheme of obtaining evolution equations showed the method possibility and 
its verification by constructing the known “Master equation” for statistical operator evolution 

through choosing SO as RDP (Section 3). Later, some theory improvements were put forward 

for the phenomenon picture, including superradiance with account for phonon effects in 

crystal lattice, with using the concept of an effective Hamiltonian (Section 4). Wide research 
into the properties of generated fields resulted in electrodynamics of medium of two-level 

emitters with considering binary correlation functions of electromagnetic field can be 

regarded as our achievement (Section 5). Nonequilibrium correlation dynamics was also an 
object of investigations (Section 6). Some attempts of computer simulations of correlation 

development, its picture in terms of waves in medium, and emitter correlation description 

using technique of spin operators are outlined here. The further work on this direction is 

connected with computer experiments. 
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