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The reduced description method (RDM) is based on Bogolyubov’s idea that at large time the non-

equilibrium state evolution of a statistical system can be described with the limited number of parameters. 

The way to the right choice of such parameters and constructing the equations of time evolution for them 

was opened by the works of Kharkiv school in statistical physics [1]. Since early 2000-ies the authors deal 

with applying the proposed technique to Dicke superradiance – the unique phenomenon of emitter system 

self-organization in the process of reaching the equilibrium state from excited one [2, 3]. We are interested 

in a more detailed picture of correlation development both in emitter and field subsystems. The problem of 

correlator decoupling which arises in the Bogolyubov method of boson variable elimination seems to need 

attention. In RDM, including the binary correlation functions into the set of reduced description 

parameters results in the necessity of calculating the averages with quasi-equilibrium Hamiltonians where 

such new parameters are present. Usually, two-level electromagnetic emitters are described using the 

quasispin operators constructed with Pauli matrices. While considering the acoustic superradiance, spin 

and phonon operators are necessary for the Hamiltonian construction. The operator forms prove to be the 

same for boson fields of different nature. Thus, we face the problem of averaging in the case when the 

exponential statistical operator includes a quadratic form of spin operator in the exponent index. 
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1. Introduction 

Since the early 2000-ies a few scientists of the Quantum Macrophysics 

Department started investigating the Dicke model of a quantum system of two-level 

emitters interacting via electromagnetic field. In the pioneer paper by Dicke [1], it has 

been shown proceeding from the analysis of the quantum state evolution that such a 

system reveals an unusual way of relaxation from the excited state to the ground one. 

In this process, the self-organization in the emitter system takes place and the 

radiation energy is emitted in the form of a short coherent pulse. Unlike the laser 

mechanism of the coherent generation, when a stimulated emission in the resonating 

cavity provides the necessary effect, the phenomenon predicted by Dicke is based on 

the spontaneous emission and does not need any resonator. It paves the way to the 

coherent electromagnetic wave generation in the frequency range where mirrors are 

absent, namely X-rays and even γ-radiation [2]. In the case of Dicke superradiance, 

opposed to such quantum phenomena as superfluidity and superconductivity, the 

theory prediction was ahead of experimental observations, the first of which dates to 

1973 [3]. The prospects of military application aroused great interest tosuperradiance 

study in 1980-ies, but the general scientific value of this phenomenon as the most 

non-trivial example of relaxation process is the main basis for the development of 

research work concerning superradiant systems. Several advanced theoretical 

methods were created in connection with the problem of coherent spontaneous 

electromagnetic emission. Both equilibrium and nonequilibrium properties of the 

Dicke model were studied. The analogous phenomena in acoustics were under 

consideration as tools for obtaining some information about crystals and controlling 

their states [4]. 
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The dynamics of Dicke model was investigated with different approaches: 

collective operators (the case of a concentrated system, i.e. with linear dimensions 

much less than the wavelength of generated emission) [1], correlation development 

consideration (applicable for a prolonged system) [5], Markoff kinetic equations with 

projection operator method [6, 7]. Bogolyubov method of boson variable elimination 

[8, 9] proved to be very effective in the superradiance theory development. In this 

method, the electromagnetic field plays the role of a bosonic thermostat. Thus, 

another method (also connected with N. N. Bogolyubov’s ideas) seemed to be an 

attractive tool for studying the Dicke process. We mean the reduced description 

method in the formulation of Kharkiv scientists S. Peletminskii and A. Yatsenko 

where the variable circle can be expanded. In this method, the kinetic equations for a 

nonequilibrium system are constructed from the condition that at big times the system 

state is described with a restricted quantity of variables. The program of such 

investigation was put into life and this paper presents the review of the obtained 

results. 

2. Hamiltonian structure of the Dicke model 

The most general structure of the Dicke Hamiltonian is  

m f mf
ˆ ˆ ˆ ˆH H H H    

(1

) 

where index m denotes the emitter subsystem – matter, f – boson field, mf relates to 

their interaction. The Hamiltonian of two-level emitters can be written with Pauli 

matrices σz multiplied by 2 (  is an operation transition frequency). If 

electromagnetic field is under consideration, the operator of the boson field has the 

form 

f

,

ˆ ( , )k kH c c ck k
 



     k k

k

k  (2) 

including usual bosonic operators numerated with photon momentum k and 

polarization α. The problem of correct matter-field interaction description requires 

special attention. Constructing the interaction Hamiltonian proceeding from the 

generalized momentum p A
e

c
  for a non-relativistic particle with a charge e in the 

field described with vector potential A  faces the question concerning the gauge 

invariance of results and omitting the term proportional to 
2A  [9]. These problems 

were discussed in detail in the monograph [10] with the affirmation about some 

contradictions between the results obtained with dipole approximation x E  

Hamiltonian and with p A  Hamiltonian using the Coulomb gauge of 

electromagnetic field. Such difficulties were overcome in our paper [11] based on the 

fundamental Lagrangian formulation of classical electrodynamics and further 

quantization procedure. We considered the system of one-electron atoms (numerated 

by index a) in an external electromagnetic field  , A . Its Lagrange function after an 
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obvious expansion in a series in electron radius-vectors x
ae

 relative to the atomic 

nucleus takes the form 

 
 

 
 

2 2 2 ,

2 2

,
,

aa ae
ae

a aae a

a

ae a an ael

a al

tM m e
L t e

te
t

c

  
         

 
   

 

 



xu u
x

x x

A x
u A x u x

x

 
(3

) 

where M and m are atom nucleus and electron masses, ua  and uae are a-th atom 

nucleus and electron (relative) velocities, correspondingly, n and l are vector indices. 

Notice that in (3) electron charge equals – e, hence a nucleus charge is e. This 

expression leads to the Hamilton function, which, when using generalized momenta 

 ,n a

a a ael

al

te
M

c


 



A x
p u x

x
 and  ,p u A xae ae a

e
m t

c
   as well as atom dipole 

momentum 
a aee d x , has the form 

 
2 22

1 ,
2 2

p p
d E x

x

ae a
a a

a a aae

e
H t

m M

 
      

 
    (4) 

if vector potential A is considered equal to zero. Though we obtain the dipole 

approximation, its substantiation is invalid in the usual weak relativistic assumption 

   , 0, , 0.A x xt t    The possible application of the Coulomb gauge  , 0t x , 

 div , 0t A x  results in the Hamilton function 

 
 

22 2

2

,1 1 1
,

2 2

a
ae a a al

a aae al

te e
H t

m c M c

    
              
 

A x
p A x p d

x x
 (5) 

containing vector-potential derivatives. 

Substituting operators for classical dynamical variables, we come to the 

Hamilton operators 1 2
ˆ ˆandH H  for quantum particles in a classical field. The 

evolution of systems with such Hamiltonians is described by Liouville equations 

ˆ , . 1,2n
n n

i
H n

t


    
 

 (6) 

We have shown that statistical operators 1 2i   are related by unitary transformation 

           †
1 2

ˆ ˆ ˆ ˆ, exp , .ae a

a

e
t U t t U t U t i t

c

 
      

 
x A x  (7) 

This fact confirms the equivalence of the Hamiltonians of two types and is ensured by 

equality  
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       †
1 2

( , )1ˆ ˆ ˆ ˆ .a
a

a

t
H t U t H t U t

c t


  




A x
d  (8) 

Since in the Coulomb gauge 
( , )1

( , ) a
a

t
t

c t


 



A x
E x , we can use the more convenient 

Hamiltonian form (4) in the quantum picture. The right analysis based on the 

Hamiltonian of p A  type (5) requires using the statistical operator 2  and 

transformed physical variable operators      †ˆ ˆU t O t U t  [11]. 

The next problem is the interaction term mfH  view in the Dicke Hamiltonian. 

Restricting ourselves with two-level objects, we must find the matrix elements of the 

operator 

ˆ ˆ ( , )ae a aH t  d E x , (9) 

for which the matrix elements of the operator ˆ
ad  in the space of eigenstates of the 

operator m
ˆ

aH , i.e. , , ,a a  , are necessary. The results for an arbitrary emitter are 

ˆ ˆ ˆ ˆ, , 0, , , 0, , , , , ,a a a a a aa a a a a a a a            d d d d d d . (10) 

The diagonal matrix elements are zero because ˆ
ad  is an odd operator and eigenstates 

have certain parity. Non-diagonal matrix elements are complex conjugated vectors 

with the same modulus for all atoms and an arbitrary phase because of this value 

arbitrariness in each atom. Their space orientation is also arbitrary if there are no 

reasons for a selected direction of the quantization axis. In literature, the proposed 

form of ˆ
ad  is r x i y  d d  where ,r id d  are certain real vectors to be concretized in 

each case [12]. We propose a more perfect form:  

ˆ ai
a ax ad e


 d n  (11) 

where an  are randomly oriented unitary vectors. The rotational invariance of their 

distribution will be taken into account further. The phase of dipole moment 

oscillation is an important parameter in the classical picture of superradiance, but in 

the quantum consideration the only vector an  seems to be enough. 

Omitting kinetic energy of emitters, we write the final view of Dicke 

Hamiltonian as 

   D

,

ˆ ˆ ˆ ˆ ˆ2 t
az ax a a k

a

H R R c c
 



       k k

k

d E x  (12) 

using Dicke quasispin operators 
1ˆ , ( , , )
2

al alR l x y z    [1] and transversal electric 

field operator 
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   
1 2

,

2ˆ ( ) ( )t i ik c e c e
V

    
   



  
  

 
 k x k x

k k

k

E x e k e k  (13) 

where the complex polarization vectors ( )e k  correspond to the circular field 

polarization. 

3. Reduced description parameters for the Dicke model 

The reduced description method (RDM) is based on the idea that at large time 

the statistical operator (SO) of a nonequilibrium system ( )t  can be regarded as a 

function of the restricted number of observables – reduced description parameters 

(RDPs)  : 
0

0( ) ( ( , ))
t

t t


    , and then the relation 
0

0
ˆSp ( ) ( , )a at

t t


     is 

valid (here and in equations (14) – (18) a numerates RDPs). In this case, we can 

describe the system evolution with differential equations for RDPs  

0 0( , ) ( ( , ))t a at L t      ,            ˆˆ( ) Sp ( )a aL L      (14) 

proceeding from the Liouville equation 

0 0
ˆ ˆ( ( , )) , ( ( , ))t

i
t H L t          

 
 (15) 

where Ĥ  is a system Hamiltonian. Sincethe transition to the reduced description 

takes place at large time, the right initial values for RDPs should be chosen (see [13]). 
Constructing the real evolution picture in this framework is possible if we deal with a 

system including well-studied subsystems with relatively weak interaction between them (

0
ˆ ˆ ˆH H V  ). The limiting form of the RDM Hamiltonian is a quasi-equilibrium one 

 (0) ˆ( ) exp ( ) ( )a aa
Y        ensuring the equalities (0)ˆSp ( )a a     and 

(0)Sp ( ) 1   . Such requirements result in the integral equation 

0 0

0
ˆ ˆ(0)( ) ( ) ( )

iH iHici d e f e e
  



         (16) 

to be solved in the perturbation scheme ( )

0

( ) ( )n

n





      using V̂ ⁓ λ as a small parameter. 

Eq. (16) assumes the existence of the algebra of observables playing the roleof RDPs  a , 

which obey the condition 0
ˆ ˆ ˆ[ , ]a ab bb

H c    where cab are C-numbers, matrix c  is present 

in (16). There also the operator function 
( )ˆ( ) , ( ) ( )aa

a

f V i L
 

      
  

  is used [14]. 

Such method is known as Peletminskii–Yatsenko scheme [15]. The corresponding expansion 

for ( )aL   provides constructing the kinetic equations for RDPs: 

(0) (1) (2)( ) ( ) ( ) ...t a a a aL L L          (17) 

where 
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(0) ( )a ab bb
L i c   , (1) (0) ˆ ˆ( ) Sp ( ) ,a aL i V     

 
, 

0 (1)
(2) (0) ( )ˆ ˆ ˆ ˆ( ) Sp ( ) ( ), , a
a a bb

b

L
L d V V i



  
              

 . 
(18) 

These terms are enough for our further calculations. 

In Dicke model studies the most interesting and important for practical applications 
phenomenon is a superradiant pulse. The stored energy is emitted during a very short time. 

The pulse duration is many times shorter than the delay time – between the pumping 

irradiation light emission at the frequency of the operation transition. Electromagnetic power 
is liberated very quickly and leaves the Dicke system. Such a process is very complicated for 

description. Thus, it is expedient to fix this process via changes in the system of emitters. It is 

a system with much less degrees of freedom – “slow” system in Bogolyubov’s terms. In 

emitter subsystem, a very fast change of the total difference of occupancy numbers of excited 
and ground level corresponds to the pulse emission. The most natural RDP in this problem is 

ˆ ˆ .z az

a

R R  Since for the Hamiltonian (12) 0

,

ˆ ˆ
az k

a

H R c c
 



     k k

k

 is the main part, 

the Peletminskii–Yatsenko condition 0
ˆ ˆ[ , ] 0zH R   is satisfied trivially. If we are interested in 

correlations between emitters, the physical value with operator ˆ ˆR R 
 should be considered 

(denotation ˆ ˆ ˆ( )ax ay

a

R R iR   ). Obviously 2 2ˆ ˆ ˆ ˆ ˆ
x y zR R R R R     . For the concentrated 

model (with dimensions much less than the emitter wavelength) considered in the 

fundamental paper by Dicke [1] 2 2 2ˆ ˆ ˆ
x y zR R R   is the motion integral, hence the maximum of 

the spontaneous emission reached at the moment of the maximal correlation coincides 

with the zero value of zR . Notice that we can use 0
ˆ ˆ ˆ[ , ] 0H R R   , ˆ ˆ ˆ[ , ] 0zR R R   . 

Processes in a prolonged system, their spatial development and behavior of higher correlation 

functions require more thorough investigation. 

The most complete information concerning an emitter subsystem is provided by 

its statistical operator. Such a program was put into life in our first papers on the 

Dicke model [15, 16]. For the Hamiltonian (12) m  was chosen as RDP for the totality 

of emitters and the energy of photon bath fE  played this role for the field subsystem. The 

regular procedure of the RDM (14) – (18) gave the temporal equations of the described 

structure for RDPs: 

 
    m 0

m m 0 f 0

,
, , ,

t
L t E t

t

 
   


, 

 
    f 0

f m 0 f 0

,
, , ,

E t
L t E t

t

 
   


. 

(19) 

Then we dealt with mL  and fL  expansions of perturbation theory in interaction powers. Since 

the terms (1)
mL  and (1)

fL  proved to be zero, we obtained the substantiation that superradiance is 

a 2nd order effect. The fact that the term (2)

fL ⁓ 0V while fE  is proportional to V justifies the 

assumption f const.E   Hence we applied the concept of equilibrium photon thermostat at a 
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temperature T. In terms of emitter subsystem, the system evolution is described by the 

equation 

    

   

0

(2) †m
m m 0 f m

†

m

1
, , { ,

, 1 } . .k

k k k

k

i

k k k

i
L t E A A n

t V

A A n e d h c



 


        

       

 
 (20) 

where  kA   are atomic operators ininteraction presentation  
m m

i i
H H

k kA e A e
  

  , kn  are 

average photon occupation numbers  B1 1k k T

kn e


  , and 
Bk  is Boltzmann constant. 

h.c. denotes Hermitian conjugation here and further. In this presentation we made use of 

collective operators †
kA , Аk. Their view in the case of the concentrated model (12) is 

   

   

1 2

,

1 2† †
,

ˆ2 2 ( ) ,

ˆ2 2 ( ) .

k ax k a

a

k ax k a

a

A A R d

A A R d


 

 

     

     





k

k

n e k

n e k
 (21) 

Ignoring the problem of polarization and introducing an averaged interaction constant

kg , we come to  †
k k kA A g R R    and summing over k in (20). At this stage it is 

possible to pass to prolonged systems, which are important in real experiments where 

the shape of the emitter subsystem determines the generated pulse direction. Account 

of the spatial localization of emitters is realized through introducing collective 

operators with corresponding factors:  
1

exp
N

a a

a

R R i 



  q q x . Then atomic operators 

acquire the view 

    * *

k kA g R f R f     q q

q

k q k q  (22) 

using so called diffraction functions  
1

ai

a

f e
N


 

k x
k  [6, 16]. Thus, in the RDM 

framework the equation for emitter subsystem SO mρ  (“Master equation”) has been 

obtained [15]. At some assumptions (initial vacuum state of the field, excluding 

quickly oscillating terms) it coincides with the results of [6] where the physically 

adequate results were obtained for a “pencil-shape crystal”. 

RDM opens the way to investigating field behavior. The method of boson variable 

elimination [8] did not raise such questions. RDPs that should be involved in the scheme with 

this end in view are occupation numbers of possible field states and correlation functions of 

boson field under consideration. A special section of the review will be devoted to them. 

4. Some new approaches and applications of RDM in superradiance theory 

Constructing the “Master equation” can be implemented basing on the operation 

of calculating the trace of  t in the space of thermostat states. Then the evolution 
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equation for  m t  is presented in terms of Liouvilleans  m m m f mf
ˆ ˆ( ) Sp ( )t L t L t      

and transformed to have a view 

 m
ef m dis m

( ) ˆ ˆ, ( )
t i

H t L t
t


     
 

. (23) 

Here 
efĤ  – effective Hamiltonian of the emitter subsystem, 

disL̂  – dissipative 

Liouvillean providing its irreversible evolution. In RDM,   is functionally dependent 

on m  and fE  [16]. This determines the Liouville equation for  m f, E  , from 

which the integral equation follows for it using the condition of complete weakening 

of correlations [17]. Correspondingly, the right-hand side of (20) has no terms of 3rd 

order by interaction constant and its error is of the 4th order. 

We obtained the picture of superradiance generation without some restrictions of 

[6], i.e. for an arbitrary boson thermostat temperature and account for antiresonant 

terms proportional to  f k q . The kinetic equation for  m t includes double sums 

over q and q (both belong to the first Brillouin zone B). It was shown in [16] that 

considering only   q q is enough. The final view of operator structures in (23) is 

   *

ef 0

1 ˆˆ ˆ ˆ ˆ ˆ ˆ
2 2

z

B B

i
H R S O R R O R R   

 

 

      q q q q q q q q

q q

, 

dis m m m
ˆ , ,

B

L R R R R     



              q q q q q q

q

 

  m m0.5 , . .R R R R h c   

  
      q q q q q  

(24) 

with the operator of cooperative polarization of emitters 

0

1ˆ ˆ ˆ ˆ( )
2

zS R R N R   q q q
 (25) 

and functions 

 n   q q ,   1 n    q q
,

 
   

23 2

2

1

2
k kd kg f     


q k q , 

 3 2 2

3 2 2

1

2

k
k

k

P d kg f


  
  q k q ,   3

3 2 2

1 2

4

k

k

n
P d k


 

   , 

 
1

γ
2

O i  q q q ,  
2

3 2

3 2 22

k

k

gi
P d k f


    

  q q k q  

(26) 

using the designation    B1 1k Tn e    . 

One can see the presence of the frequency shift   of emitters connected with their 

interaction with field. Frequencies q  describe collective effects in the system and self-

amplification of certain modes, such frequencies do not depend on the thermostat 

temperature. 
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In further such technique was applied to research into superradiant processes with taking 

into account additional factors: atom motions, higher correlation function etc. In [18], a 
generalized Dicke quasispin model of (12) type was considered, it was a system of two-level 

emitters forming a 3-dimensional lattice Q with ν particles in a site. The term mfH  was 

written in the usual form 

 mf

,

1ˆ ˆ ˆ ,H g R c R c
V

    k k k k k

k

  


 (27) 

but collective operators of emitters (Fourier transformed densities of particle quasispins) are 
modified: 

   ˆ ˆ

1 ν 1 ν

ˆ ˆ ˆ ˆ,n ns n nsi i

ns z zns

n Q n Q
s s

R R e R R e
     

 
   

  
k x u k x u

k k
 

(28) 

where n numerates lattice sites and s numerates atoms in them. The displacement in site 

operators ˆ
nsu  are expressed via phonon operators λ λ,a a

q q  for each atom of the lattice through 

the summation over the first zone of Brillouin B. 

 
  

1 2

λ λ

λ
1 λ 3ν

ˆ . . .
2 ω

ni

ns s

B s

a e h c
Nm




 

 
   

 


q x

q

q

u e q
q

 (29) 

The system Hamiltonian should be supplemented with the term corresponding to phonons 

p λ λ λ

λ,

ˆ ω ( ) .H a a q q

q

q  

At the first stage of RDM, we chose the statistical operator of emitter subsystem mρ  as 

well as energies of photon and phonon subsystems Ef and Ep to be used as RDPs for our 
problem. Proceeding from the basic kinetic equation in the form (23) and the assumption of 

equilibrium boson thermostats, we came to the effective Hamiltonian and dissipative term for 

the emitter subsystem and evolution equations for boson subsystems 

   

   

 

4

ef , ,

, , , ,

4

dis m , , m

, , ,

f m m , ,

ˆ ˆ ˆ ˆ ˆ ˆ ,

ˆ ˆ ˆ ˆ ˆρ ,ρ ,

ˆ ˆ ˆ ˆSp ρ

zns ns n s ns n s ns n s ns n s

n s n s n s

ns n s ns n s ns n s ns n s

n s n s

t ns n s ns n s ns n s ns n s

H R A R R B R R O g

L C R R D R R O g

E G R R H R R O

   

       

 

   

       

 


   

       

    

 
   
 

   

 



 

   

4

, , ,

4

p m m , ,

, , ,

,

ˆ ˆ ˆ ˆSp ρ .

n s n s

t ns n s ns n s ns n s ns n s

n s n s

g

E M R R N R R O g

 

   

       

 

   





 (30) 

The Hermitian matrixes ,ns n sA   ,..., ,ns n sN    depend on time through  fE t  and  pE t  . They 

are expressed via the Planck distribution B

1

1
k

k T

kn e


 

  
 
 

 and van Hove type functions [19]  

      ˆ τˆ

, p p, τ Sp n nsn ns ii

ns n sg w e e
   

  
k x uk x u

k  (31) 

with pw  standing for the equilibrium statistical operator of phonons. 
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If we study the Dicke process in a crystal, the conventional approach is investigating the 

behavior of the average value of 
,

ˆ ˆ
zns

n s

R R . Regarding the set of RDPs      f p, ,R t E t E t  

(we shall use for boson subsystem parameters the general notation η ) and using the 

constructed “Master equation”           m 0 int mdis

ˆ ˆ ˆρ η η ρt L L t L t t   , we obtain the set 

of differential equations 

           ,η , η ,η ,i iR t L R t t L R t t   (32) 

which will be referred to as generalized Rehler-Eberly equations. Here 

        m int dis m
ˆ ˆ ˆ,η Sp η η ρ ,ηL R R L L R  ,      m

ˆ,η ρ ,η ,ηi iL R L R . In RDM scheme 

right-hand sides of (32) acquire the view  

       (2) (2) 4 (2) 4

m int dis q q
ˆ ˆ ˆSp , ρ , ρ ,ηi iL R L L O g L L O g     (33) 

via the iteration procedure for mρ  with a quasi-equilibrium SO qρ  used as a zero-th 

approximation. The problem of calculating averages with it will be considered later. 

Aiming to explore correlations between emitters, we come to studying the “Master 

equation” of (23) type with 

  

    

ef 0 int

,

dis m m m m

, ,

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ,

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆρ ,ρ ρ ρ .

zn nn zn zn nn n n n n

n n n

nn zn zn nn n n n n nn n n n n

n n n n

H R I R R I R R R R H H

L A R R B R R R R C R R R R

   

    



       

       

 


      

 
     
 

 

 
 (34) 

Expression for the effective Hamilton operator 
efĤ is close to the theory of an 

anisotropic Heisenberg magnetic [20]. Our assumptions are: intĤ ⁓ λ, disL̂ ⁓ λ, λ<<1 is 

a small parameter. We study the stage of emitter system evolution, at which it can be 

described by RDPs 

  m
ˆSpρ ( )n nR t t R  . (35) 

Averaged SO of the system can be introduced too, that gives [21] 

       m mρ , ρR t g t R t ,                   
,

m mρ , ρ
G g

R

R R
R g e R

 
 

 


 . (43) 

It was shown in [21] that equations (41) coincide with (39) and    m mρ , ρ ,R g R g  if 

the projecting operator nnP   in (38) destroys short-range emitter-emitter correlations. 

So, it is possible on the basis of equations (41) to investigate kinetics of emitters 

taking into account long-range nonequilibrium fluctuation (correlations).  

According to ideas developed in [20] for spin systems, the 1st of equations (41) 

describes mean quasispin field evolution. The 2nd of equations (41) describes 

quasispin field excitations. In this sense one can consider σ σ

n ng
 

   as a density matrix of 

excitations.  For our system of emitters these excitations can be named the Frenkel 
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excitons. Thus, kinetic equations for excitons in a usual sense have been obtained. 

The ideas of Section 4 were summarized in our paper [22]. 

5. Reduced description of electromagnetic field in Dicke process 

As we have pointed out above, the possibility of studying electromagnetic field states is 
an important advantage of reduced description method. In general, a quantum field state can 

be presented by the totality of occupation numbers of field modes, but such information is 

redundant. Physically valuable information is obtained through using such field 
characteristics as electric and magnetic component strengths. In quantum theory, operators 

dependent on space and time coordinates correspond to these variables. Their average (in 

quantum sense) values give the picture of field evolution. More precise information about a 
process is presented by correlation functions of different orders of specified variables. 

Thus, Dicke Hamiltonian (12) should be rewritten using relevant field variables. Since 

publishing [23], we put down the Hamiltonian under consideration appealing to notions of 

electrodynamics of continuous media: 

mf
ˆ ˆ ˆ( ) ( )tH d   xE x P x . (44) 

Here ˆ ˆ( ) 2 δ( )ax a a

a

R P x d x x  is the operator of electric dipole moment density of 

emitters, the spatial orientation of ad  is supposed to be uniform. The nonequilibrium 

state of the field will be described by parameters  η that include the average 

transverse electric and magnetic field strengths μζ  with the operators 

   
1 2

,

,

2ˆ ( )t ik
n nE e c c e

V

  
   



  
  

 
 k x

k k

k

x k , 

    
1 2

,

,

2ˆ ( ) ik
n nB e c c e

V

 
   



  
   

 
 k x

k k

k

x k k  

(45) 

and their binary correlations ( , )   . Here μ and μʹ numerate new RDPs, n is a 

vector index, / ,kk k ( )ne k  corresponds to the linear polarization of modes.  The 

general definition of the binary correlation function of operators â  and b̂  is given by 

the formula with the statistical operator ρ  of the system and their anticommutator 

ˆ ˆˆ ˆ( , ) Sp { , } / 2 Sp Spa b a b a b     . (46

) 

The state of the medium will be described by the average density ε( )x of its 

energy 

ˆ( ) Sp ( )  x x ,    ˆˆ( ) ( )az a

a

R    x x x . (47

) 

Introducing the velocity change operator of the quantity with the operator â  in 

Schrödinger picture: ˆ ˆ ˆ[ , ]
i

a H a , we come to Maxwell’s operator equations 
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ˆ ˆrotc B E ,     ˆ ˆ ˆrot 4πnc E B I ,   ˆdiv 0B ,    ˆ ˆdiv 4πρE  (48

) 

using the operators of complete electric field ˆ ˆ ˆ4πt E E P  and current 
ˆˆ I P  and charge 

ˆρ̂ div  P  density. The operator equation for medium energy density takes the form  

ˆ ˆ ˆε( ) ( ) ( )t x I x E x . (49) 

In [24], the compact form of evolution equations for averages of field RDPs was 

substantiated 

t i Q    


    c ,      : 0, 4 rotQ c  P  (50

) 

where μμ c issome numerical matrix. The equation (50) results in the evolution equation for the 

binary correlation functions for field variables 

1 2 1 1 1 2 2 2 1 2 1 2

1 2

1 2( , ) ( , ) ( , ) ( , ) ( , )t i i Q Q   

 

     c c           
 

        . (51

) 

Equations (50) and (51) give a complete set of temporal equations for the RDPs of the 

electromagnetic field in the medium (we will denote all of them as  ηa ). Together with the 

evolution equation for ( ) x , they give the whole picture of the Dicke process taking into 

account binary correlations in electromagnetic field. In this case Bogolyubov functional 

hypothesis view is 
0

( ) ( ( ), ( ))
t

t t t


     with spatially dependent field and emitter 

variables. Let`s remember that in Dicke model 
0 m f

ˆ ˆ ˆH H H  , hence the Peletminskii – 

Yatsenko requirements are required (see (14) – (18)). The non-diagonal matrix element d of 
the dipole moment operator of an emitter plays the small parameter role. 

In the approach under consideration, the quasi-equilibrium operator of Eq. (16) takes the 

form 

q f m( , ) ( ) ( )        . (52) 

f ( )  is aquasi-equilibrium statistical operator of electromagnetic field, its exponent 

indicator includes a quadratic form of Bose operators providing the existence of 

traces. m ( )   is a product of the exponent with a quasispin operator ˆ( ) x (47) in the 

indicator and the uniform angular distribution of atom dipole moments, it depends on 

local medium temperature. It was shown [24] that 1storder (in d) contributions to the 

kinetic equations (see (17)) for RDPs η and ε are zero as well as (1)
P and (1)

I .That is 

why the 1storder contribution to the SO (52) is reduced to 
0

(1)

f m
ˆ ˆ, ( , ) ( , )ti

d d


         
   x E x P x  (53) 

where the time dependence of functions means 

f f
ˆ ˆ

ˆ ˆ( , ) ( )
i i

t t
H H

e e
 

 E x E x , 
m m

ˆ ˆ
ˆ ˆ( , ) ( )

i i
H H

e e
 

 P x P x . 
(54

) 
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Drawing on Peletminskii – Yatsenko conditions, we obtain from this the time 

dependence of  ˆ ( , )P x and field Fourier component ˆ t

kE , the last depending on 
k . On 

this basis it is possible to calculate the 2ndorder term of average polarization 

0

(2)

f f m m
ˆ ˆ ˆ( ) Sp ( , )Sp ( ), ( , )t

n l n l

i
P d d E P P



        
  x x x x x  (55) 

where ˆ ˆ ˆ( ), ( , ) 4 ( ) ( )sinn l nlP P i a       
 

x x x x x , ˆˆ ( ) ( ).nl an al az a

a

a d d R x x x  In terms of 

Fourier images, we have 

 
0

(2) 14
( ) cos sin ( )sint

n lk k lk k k nl

k

iP e d E cZ a
V





         
k x

x x  (56) 

where m m
ˆ( ) Sp ρ ( )nl nla ax x ,   f f

ˆSp t t

lk lkE E  ,   f f
ˆSp , ( ) rot ( ).lk lk l lZ Z Z  x B x  

Averaging over directions gives connection with medium energy density for the 

function ( )nla x :  

2

( ) ( )
3

nl nl

d
a   


x x . (57) 

Integrating over time in generalized functions results in the material equation of 

electrodynamics in the case of a spatially inhomogeneous medium: 

(2) 1
( ) [ ( , ( )) ( , ( )) ]t

n n n

iP e E c Z
V

  k k

k

k x
x k x k x     (58) 

with designations 

2

2 2 2

4
( , ) P

3 k

d 
    

  
k ,     

2

2 2

2
( , ) ( )

3
k

d
    


k . (59) 

In view of 2~t d  , we should not differentiate ε when calculating current density 

and therefore 

(2) 1
( ) [ ( , ( )) ( , ( )) ]t

n n n

k

iI e E c Z
V

      k k

k x
x k x k x ,

(2) ( ) [ ( , ( )) ( , ( )) ]t

n n nI d E c Z          k kx x x x x x x x  
(61) 

where 

 
2

2

2

2
( , ) ( , ) ( )

3
k k

d
         k k , 

2

2 2 2

4 1
( , ) ( , ) P

3 k

d
       

 
k k  

(62) 

Notice that coefficients   and  characterize dielectric susceptibility and conductivity, 

respectively, coefficients λ and   relate spatial inhomogeneity and frequency 
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dispersion. Obviously, averaged charge density in the medium is zero in the case of 

spatial homogeneity.  

Thus, we have constructed electrodynamics of a medium of two-level emitters. 

Its equations are 

rott c  B E ,     rot 4t c   E B I ,   div 0B ,    div 4πρE .           (63) 

Equations (59) and (62) provide material equations for them. The set (63) is of usual 

form. Since nP  is proportional to 2d , a complete field in (63) can be replaced with the 

transversal one. Accepted RDPs are ,t
E B  and their binary correlations. but all 

obtained equations are valid with considered accuracy if we use the complete field for 

the process description. At the same time, material equations do not include binary 

correlations.  

Putting forward the task to study the medium energy density evolution, we face 

the problem of solving the differential equation for ε (49) using in its right-hand side 
(2) ( )L x obtained results concerning andP I . Rather complicated calculations give the 

expression[24] 

 
2 4

3

3

2
( ) ( ( ), ( )) ( ) ( ) ( ) ( )

3
t n n n n

n

d
I E I E n O d

c


     x x x x x x . 

(64

) 

Besides the correlation functions (46) between andI E components and their scalar 

product, Eq. (64) contains the term describing system energy reduction due to dipole 

radiation, which is proportional to the spatial density of emitters 
ε( )

( )n 


x
x . 

6. Correlation functions in RDM 

Pay attention to the fact that our technique provides the possibility of studying 

the behavior of correlation functions in Dicke process. Such functions play a decisive 

role in quantum optics research. Conventional approach to 

superfluorescencepresumes considering the time of pulse delay and the total quasispin 

evolution. Thus, the process of correlation development is an open question. In early 

paper [25], the superradiance picture with higher correlations in emitter subsystem 

was built in the framework of the method of boson variable elimination for a 

concentrated Dick model. This methodgenerates the chainof linked equations 

involvingmore and more complicated functions. The result of [25] was very simple: 

higher correlation function account does not influence the delay time. At the same 

time numerical experiments demonstrate the exponential growth of correlation 

functions. An analogous problem for a prolonged system has no transparent solution. 

But RDM gives us a chance to simulate the development of correlations of field 

parameters in an arbitrary system. With this end in view, we considered the set of 

equations describing the evolution of binary field correlation function.The choice of 

RDPs is unlimited though technical difficulties grow very quickly. 

In [26], we tried to construct an evolution equation for a binary correlation 

function (50) made of strength parameters of electromagnetic field. Proceeding from 

the compact operator equation form of (50) type 
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1 12 2 1

2

ˆ ˆ ˆ4i I    c  (65) 

where 

1
ˆ ˆ( ) ( )n nE x x ,    2

ˆ ˆ( ) ( )n nB x x ;       1 ( ) 0nI x ,      2
ˆ ˆ( ) ( )n nI Ix x  (66) 

(n is a vector index, matrix 12c  coincides with the corresponding one in (50)), we 

write down the equation for a correlation function as 

1 2 11 1 2 22 1 2 1 2 1 2

1 2

( , ) ( , ) ( , ) 4 ( , ) 4 ( , )t i i I I   

 

               c c . (67) 

In usual notations, the corresponding equations are given by the formulas 

( ) rot ( ) rot ( )x x x x x x
t n l n l l nB B c E B c B E

      , 

( ) rot ( ) rot ( ) 4 ( )x x x x x x x x
t n l n l l n n lB E c E E c B B B I

         , 

( ) rot ( ) rot ( ) 4 ( ) 4 ( )x x x x x x x x x x
t n l n l l n n l n lE E c B E c E B I E E I

            

(68) 

(hereafter for the simplicity ( ( ), ( )) ( )x x
n l n lE B E B

 x x  and so on).  

To find the material equations for evolution equations for correlations one must 

calculate nonequilimrium correlation functions ( )x x
n lB I

 , ( )x x
n lE I

 . The correlations are 

found in the main (second) approximation in the field-medium interaction, i.e. in 

dipole moment of an emitter d ). So, it is enough considering the correlation function

( )tx x
n lE I

 .The necessary calculations are like those conducted for obtaining (64).  Let’s 

give the results [26]. 

(2) (2)( ) ( ) ( , ( ))tx x tx x

n l n l nlE I E I S n
     x x x , 

2 2
3

2
( , ) ( )

12

i t

nl nl k

d
S n n d e 

    
 

k x
x k  

(69) 

(2) (2)( ) ( ) (( , ( )))x x x x

n l n l nlB I B I T n
     x x x , 

2 2
3

2 2 2

1
( , ) P

3 2

i

nl nls

s k

cd
T n n e d e

x

 


   
k x

x k . 
(70) 

The presence of the functions ( , )nlS nx and ( , )nlT nx  in (69) and (70) is an interesting 

fact.Their expressions include transversal δ-symbol 2/t
nl nl n lk k k     and Levi-

Civita tensor nlm . These formulas are necessary supplementsto the equations (67). It 

is worthto emphasize that material equations for correlations do not contain in the 

considered approximation average electromagnetic field. On the other hand, the 

material equations (58) and (61) to Maxwell equations do not contain binary 

correlations. However, due to the specified terms in (69) and (70), these material 

equations depend on the density of medium energy. According to evolution equation 

for the energy density (64), it is changed under the influenceboth the field and its 
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correlations. So, in the case of nonequilibrium medium evolution of the field and 

correlations are connected. Thus, we have built electrodynamics of a continuous 

medium formed by two-level emitters (with fixed positions)taking into account 

binary correlation functionswith accuracy up to 2nd order terms. 

The obtained theory opens the way to the numerical analysis of field correlation 

development in Dicke system, though expected calculations are very complicated. 

Such an attempt was done in paper [27]. Solving the Cauchy problem for the 

equations of (68) type requires material equations in a spatial form (see 2nd equation 

of (92), the upper index of nI  there may be omitted). Due to the representation 

( )1
σ( ,ε( )) σ( ,ε( )) ie

V

    
k

k x x
x x x k x , ( )1

ξ( ,ε( )) ξ( ,ε( )) ie
V

    
k

k x x
x x x k x  (71) 

and the transformation that is valid in the thermodynamical limit 3

3
... ...

(2π)

TL V
d 

k

k

we can obtain the necessary values via integrating in spherical coordinates.If we 

neglect the Lorentz broadening, in integrals over k  k such functions as  δ k c  

appear.The results are 

 
 2

2

sin /
σ ,ε( ) ε( )

3π /

cd

c c

 
  

 

x x
x x x x

x x
,

2

2 2

2 ε ( )
ξ( ,ε( )) (1 cos( / )

3π

d
c      

 

x
x x x x x

x x
. 

(72) 

In spite ofthe rather simple structure of equations (63), (64), (68) and the 

availability of expressions (72), the set of kinetic equations remains very difficult for 

simulations because of the great number of variables, presence of spatial 

differentiation and integration as well as additional terms in (69) and (70). A natural 

way of simplification is considering a system of a smaller number of dimensions. In 

[27], a one-dimensional (along axis z) crystal was proposed for consideration. Dipole 

moment orientation was also fixed (such supposition may be physically 

substantiated), field amplitude vectors OxE , OyB  and wave vector Ozk . Thus, we 

came to the set of field RDPs ( )xE E z , ( )yB B z , ( ) ( ( ), ( ))x xEE E z E z  ,

( ) ( ( ), ( ))x yEB E z B z  ,  ( ) ( ( ), ( ))y yBB B z B z  . Kinetic equations for them are 

4 ( )t

B
E c I z

z


   


 ,           ,t

E
B c

z


 


 

( ) ( )
( ) 4 ( ) 4 ( )t

E B EB
EE c c IE EI

z z

  
       

 
  ,   

( ) ( )
( ) ,t

EB BE
BB c c

z z

  
   

 

( ) ( )
( ) 4 ( )t

BB EE
EB c c IB

z z

  
     

 
 . 

(73) 

At the first stage of the Dicke process, we may neglect the changes of the emitter 

subsystem energy density and take the fixed value of this parameter. In [28], 
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advanced version of (73) was constructed for a two-dimensional system. Real 

computer simulations are in our plans. 

Another interesting result of the superradiance field behavior analysis with using 

the ideas of electrodynamics of continuous media, which are applicable just at the 

beginning of Dicke arranging, is dispersion relations for waves in Dicke model [29]. 

We used the material equations (62), but considered also the non-uniform broadening, 

i.e. the coefficients were taken in the form 

0

( , ) ( ) ( )ks d w



       k ,
2 2

0

2 1
( , ) ( )P

k

s
d w



     
  k  (74) 

where k ck  , 2 22 3s d    and, in accordance with [?] 

 
2 2( )

w c 


 

 
,

0

( ) 1d w



    (75) 

Standard electrodynamics procedure for such medium gives the specified equation in 

the view 

2
2

2
( , ) 0nl n lk u k k

c

 
     

 
k  (76) 

with 
11 4 ( , )

( , )
1 4 ( , )

i
u

    
 

  

k
k

k
. We suppose an isotropic case ( , ) ( , )u u k  k , so the 

vector  E  structure is defined only by the vector k  and can have the longitudinal l
E

and transversal t
E  components. Searching for dispersion laws for them in the form 

( )k i      shows:for longitudinal waves propagation is impossible, but the 

positive sign of  evidences that field energy grows rapidly when ck is close to  ; 

for transversal waves 2 ( )sw ck
   and    gives the possibility of calculating their 

group velocity, which value decrease relative to c is proportional to the small 

parameter s. All results are physically convincing and provide the picture of 

superradiance in classical terms. 

Obviously, correlations in field states are coordinated with some correlations 

between emitters. This connection description is an interesting problem for further 

investigations. As we pointed out above, dynamics of atom subsystem is simpler for 

modeling because of less quantity of freedom degrees. Binary and higher correlation 

functions naturally arise in considering superradiance in prolonged systems and 

related problems such as self-induced phase transitions [8]. Reduced description 

method opens the possibility to study the behavior of quasispin atom operator 

correlation functions of arbitrary orders via including them in RDPs. In [27], we 

developed these ideasand revealed characteristic problems of such approach. Indeed, 

RDM equations use averages of operators calculated with a quasi-equilibrium 

operator with a linear combination of RDPs in the exponent indicator. In the case of 

RDPs, which are linear in quasispin operator, the technique of specified calculations 

is well known, but it is problematic for more complicated operator forms.In this 
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paper, the development of our previous ideas of overcoming the corresponding 

difficulties through the consideration of the small deviation 2 2 20     of the 

RDP 2  from its value at using only the linear form of spin operators. In the resent 

paper calculation Now the derivation of q  in the perturbation theory by 2  is 

simplified. This theory is implemented in the technique of calculations with spin 

operators. 

5. Conclusions 

Theresultsofthispaperconsist in constructing the set of equations of the 

electrodynamics of continuous medium created by two-level emitters with random (or 

fixed) orientation. They have the usual Maxwell form if the medium charge and 

emitter current density are taken into account. The system evolution is investigated in 

the reduced description scheme providing the possibility of studying field 

correlations. Material equations connecting polarization and current density with 

electric and magnetic field parameters prove to be necessary. Such equations are built 

in a way taking into account the resonant nature of matter-field interaction. The 

possibility of using the complete electric field in equations is substantiated if the 

matter-field interaction is considered to be a small parameter. The local field 

characteristics depend on the emitter subsystem energy density. The evolution 

equation for this quantity should be derived in our next paper. Thus, presented results 

arethebasisforthe futureinvestigationof self-ordering processes in the Dicke model 

with the picture of field behavior. 
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