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In quark­gluon plasma (QGP), at higher deconfinement temperatures T ≥ Td the spontaneous gener­
ation of color magnetic fields, b3(T ), b8(T ) ̸= 0 (3, 8 are color indexes), and usual magnetic field b(T ) ̸= 0
happens. Simultaneously, the Polyakov loop and/or algebraically related to it A0(T ) condensate, which is
solution to Yang­Mills imaginary time equations, are also created. Usually, in analytic quantum field the­
ory these effects are investigated independently of each other within the effective potentials having different
mathematical structures. The common generation of these condensates was detected in lattice Monte Carlo
simulations.

Recently, with the new type two­loop effective potential, which generalizes the known integral repre­
sentation for the Bernoulli polynomials and takes into consideration the magnetic background, this effect
has been derived analytically. The corresponding effective potential W (T, b3, A0) was investigated either in
SU(2) gluodynamics or full QCD. The gauge fixing independence of it was proved within the Nielsen identity
approach. The values of magnetic field strengths at different temperatures were calculated and the mecha­
nism of stabilizing fields due to A0(T ) condensate has been discovered. In the present review, we describe
this important phenomenon in more details, as well as a number of specific effects happening due to vacuum
polarization at this background. They could serve as the signals of the QGP creation in the heavy ion collision
experiments.
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1. Introduction
Deconfinement phase transition (DPT), as well as the properties of the quark­gluon plasma

(QGP), are widely investigated for many years. Most results have been obtained in the lattice
simulations because of the large coupling value g ≥ 1 at the phase transition temperature Tc. But
at high temperatures due to asymptotic freedom the analytic methods are also reliable. They give
a possibility for investigating various phenomena in the plasma. Among them is the creation of
gauge field condensates described by the classical solutions to field equations without sources.
Only such type fields could appear spontaneously inside the QGP. The well known ones are
the so­called A0 condensate, which is algebraically related to the Polyakov loop (PL) and the
chromomagnetic fields b3 = gH3, b8 = gH8 (3, 8 are color indexes of SU(3) group) which are
the Savvidy vacuum states at high temperature. These condensates result in numerous proper
new effects which could be the signals of the QGP. The condensation ofA0 alone is investigated
by different methods. For recent works see, for instance, [1] and references therein.

All the mentioned condensates are the consequences of asymptotic freedom and follow
from the important property that asymptotic freedom at high temperature inevitably results in
an infrared instability at low one. The field condensation prevents such type instability that re­
sults in the formation of the physical vacuum state. In quantum field theory (QFT), the magnetic
and the A0 condensates are generated at different orders in coupling constant (or the number of
loops) for the effective potential (EP)W (T, b, b3, b8, A0). So that they have different tempera­
ture dependencies and play different roles in the QGP dynamics. For example, A0 is generated
at g4 order in coupling constant and determined by the ratio of two­ and one­loop contributions
to W (A0). So it has the g2 order. The fields b(T ), b3(T ), b8(T ) are generated in tree ­ plus
one­loop ­ plus daisy approximation and also have the order g2 in coupling constant. But they
have other temperature dependence due the contribution to the EP of the tree­level term coming
from the classical equation solutions. On the other hand, the contribution of A0 at tree level
equals zero because it is a constant electrostatic potential. This difference is important at high
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temperature. All mentioned features require special comprehensive considerations.
The fields investigated below are an important topic towards a theory of confinement. The

A0­background is relevant because at finite temperature such field cannot be gauged away and
is intensively investigated beginning with [2]. In the early 90­ies, two­loop contributions were
calculated in QCD and with these, the EP has non­trivial minimums and related condensate
fields (see, for instance, [3], [4]). They form a hexagonal structure in the plane of the color
components A3

0 and A8
0 of the background field.

The other kind background is the chromomagnetic one. More details about this field and
the ways of its stabilization at finite temperature can be found, in particular, in [5], [6], [7] .
The magnetization is also resulted from the minimum of the EP, which is stable in the consistent
approximation of one loop plus daisy diagram contributions. In the review [6] and book [7] the
results of different approaches (analytic (in noted approximation) and numeric) are presented,
in particular, on lattice calculations with A0 and chromomagnetic field.

A common generation of both fields was studied analytically in [15]. Here, new represen­
tation generalizing the known integral representation for the Bernoulli polynomials, was worked
out, which admits introducing either A0 or any b fields up to two­loop order. Below we write
b for each magnetic field, for brevity. Within this representation, in particular, the known re­
sults for separate generation of the fields have been reproduced. However, the spontaneous
generation of chromomagnetic field up to two­loop order was not investigated in detail. So, the
mechanism of the vacuum stabilization remained not clarified finally.

This problem was analytically investigated in [10]. It is of grate importance because in the
lattice calculations accounting for both backgrounds [8] it has been observed that in the presence
of the constant color magnetic field the PL acquires a non­trivial spatial structure along the
direction of the field. More interesting, on the lattice also, a common spontaneous generation
of both fields was detected [9], [7]. So, to clarify a mechanism of magnetic field stabilization in
QFT taking into consideration both condensates, one has to turn to two­loop calculations. This
is because the stabilization of magnetic field within the one­loop plus daisy diagrams does not
work. Such approximation is insufficient in case of two fields. This is because the generation
of the latter one is realized at two­loop level for the EP. In what follows, we discuss in details
both these approximations and compare the obtained results. In fact, in the current literature the
cases of the A0 and b condensations are investigated separately. So, mutual relations of them
remained not clarified and estimated qualitatively, only.

In what follows, first, we calculate the EP as the function of A0, and b = gH3, in SU(2)
gluodynamics. The extension to full QCD is trivial because it includes three such groups. The
integral expressions for the EP of the A0 are generalized to include the magnetic background.
Also, we consider the limiting cases A0 = 0 and b ̸= 0 and find, for instance, the magnetic
condensate in two­loop order, which was also considered in [5], [15] but using other approaches
and in not wide temperature interval.

Note again that the spontaneous generation of a background field is meant in the sense that
for the corresponding field the EP has a minimum below zero, which is energetically favorable.
In QGP, the A0(T ) ( or/and PL) results in the color Z(3) symmetry breaking and the Furry
theorem violation. The magnetic fields considerably change the spectra of quarks and gluons as
well.

So, new phenomena have to be realized. In particular, the induced color chargesQ3
ind, Q

8
ind

and the physically unexpected new type vertexes joining photon and gluon states could be gen­
erated. Obviously that at low temperature this is impossible, the white states and the colored
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ones do not interact (unite) in one vertex. The PL as well as A0(T ) are the order parameters
for the DPT. At low temperature they equal zero. At high temperature they become nonzero.
The same concerns the spontaneously created magnetic fields. Recently, on the principles of the
Nielsen’s identity method and new type integral­sum representation for the EP we derived the
gauge invariant expression for theA0 condensate in the magnetic fields in two­loop approxima­
tion, [15], [4]. This (in particular) opens a possibility for calculating the induced color charges
and other effective vertexes for this general background of QGP.

To realize that, we have to calculate the contribution of diagrams depicted in Fig. 1 and
Fig. 2. There in, the solid line presents the quark propagator in the A0 and magnetic fields
and the wavy line presents the zero component of gluon fields G3

0 or G8
0. At finite temperature

T , in the Matsubara formalism, one has to calculate the temperature sum over discrete energy
values p4 = 2πT (l + 1/2), l = 0,±1, ..., integrate over momentum component p3 oriented
along the space field direction, calculate the sum over spin variable σ = ±1 and sum up over
n = 0, 1, 2,..., in correspondence to the fermion spectrum in magnetic field b: (p4 + gA0)

2 =
m2 + p23 + (2n + 1)b − σb. Here we write b as a general expression corresponding to each of
the fields. This is eH for usual magnetic field, gH3, gH8 ­ for color fields.

In actual calculations of investigated effects, we apply the low level approximation, n =
0, σ = +1 giving a leading contribution for strong external fields. We obtain that the induced
color charge Q3

ind is nonzero. The presence of the magnetic fields changes the values of it
compared to the zero field case. As a result, we derive that QGP has to be magnetized and color
charged.

The way of presenting the results is as follows. First, in sect. 2 we introduce and discuss
the general two­loop EP of both field calculated in the backgroundRext.

ξ gauge. This EP will be
investigated for various cases of interest. So, one is able to proceed further taking into consider­
ation only this one. However, for more detailed considerations, in sect. 3 we present the results
on the Nielsen identity method for proving the gauge fixing parameter (ξ) independence of the
EP. In sect. 4 we find the relation for the initial ξ­dependent EP and the EP of order parameter
PL [4]. Then in sect. 5 we consider the case of b field generation. The case of A0 only is ad­
ditionally investigated in sect. 6. This section closes describing the creation of the stable QGP
background at high temperature. In next sections we consider new type vertexes and related
with them effects which have to happen and manifest the creation of QGP. Namely, in sect. 7
we calculate the induced color charge Q3

ind. followed from diagram in Fig. 1. In sect. 8 we
calculate and investigate the effective vertex in Fig. 2 which joins one gluon and two photon
states. A number of effects related to this vertex is discussed. In final section we summarize the
results reported and describe prospects for the future.

2. Effective potential of fields
In the case of SU(2), the effective potential in the background Rξ gauge reads [15]:

W
SU(2)
gl = B4(0, 0) + 2B4 (a, b) (1)

+ 2g2
[
B2 (a, b)

2 + 2B2 (0, b)B2 (a, b)
]
− 4g2(1− ξ)B3 (a, b)B1 (a, b)

with the notation

a =
x

2
=

gA0

2πT
, b = gH3

3 . (2)
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Fig. 1. Tadpole diagram

Fig. 2. Effective γ − γ −G3(g) diagram

The chomomagnetic field is directed along third directions in coordinate and color spaces. Since
we work at finite temperature,Wgl is equivalent to the free energy.
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The functions Bn(a, b) are defined by

B4(a, b) = T
∑
ℓ

∫
dk3
2π

b

4π

∑
n,σ

ln
(
(2πT (ℓ+ a))2 + k23 + b(2n+ 1 + σ − i0)

)
, (3)

B3(a, b) = T
∑
ℓ

∫
dk3
2π

b

4π

∑
n,σ

ℓ+ a

(2πT (ℓ+ a))2 + k23 + b(2n+ 1 + σ − i0)

B2(a, b) = T
∑
ℓ

∫
dk3
2π

b

4π

∑
n,σ

1

(2πT (ℓ+ a))2 + k23 + b(2n+ 1 + σ − i0)
,

B1(a, b) = T
∑
ℓ

∫
dk3
2π

b

4π

∑
n,σ

ℓ+ a(
(2πT (ℓ+ a))2 + k23 + b(2n+ 1 + σ − i0)

)2 .
In eq.(1), ξ is gauge fixing parameter, the summations run n = 0, 1, . . . , σ = ±2 and ℓ runs over
all integers. The ′− i0′­prescription defines the sign of the imaginary part for the tachyon mode.
These formulas and eq.(1) are the generalization of the corresponding two­loop expressions
in [21], eqs.(3.8) and (A.2)­(A.5), [23], eq.(14), [24], eq.(4), and also [4], eq.(4), to the inclusion
of the magnetic field. Note the sign ”­” in eq.(5). Below we use also the relations

B3(a, b) =
1

4πT
∂aB4(a, b), B1(a, b) =

−1

4πT
∂aB2(a, b). (4)

For b = 0 we have to replace b
4π

∑
n,σ →

∫
d2k
(2π)2

and get

B4(a, 0) =
2π2T 4

3
B4(a), B3(a, 0) =

2πT 3

3
B3(a), (5)

B2(a, 0) =
T 2

2
B2(a), B1(a, 0) = − T

4πB1(a)
,

where Bn(a) are the Bernoulli polynomials, periodically continued. The special values for, in
addition, a = 0 are

B4(0, 0) = −π2T 4

45
, B3(0, 0) = 0, B2(0, 0) =

T 2

12
, B1(0, 0) =

T

8π
. (6)

We note that these formulas hold for T > 0. Themotivation for the above choice of the notations
is that the functions Bn(a, b), (3), are the corresponding mode sums without additional factors.
More details about this representation as well as the renormalization and the case of T = 0 are
given in [15].

3. Effective potential and Nielsen’s identity
Now, let us consider SU(2) gluodynamics in Euclidean space time, for the case of zero

magnetic field and nonzero background field Āa
µ = A0δµ0δ

a3 = const, described by the La­
grangian

L =
1

4
(Ga

µν)
2 +

1

2ξ
[(D̄µAµ)

a]2 − C̄D̄µDµC. (7)

The gauge field potential Aa
µ = Qa

µ + Āa
µ is decomposed in quantum and classical parts. The

covariant derivative in eq.(7) is (D̄µAµ)
ab = ∂µδ

ab−gϵabcĀc
µ, G

a
µν = (D̄µQν)

a− (D̄νQµ)
a−
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gϵabcQb
µQ

c
ν , g is gauge coupling constant, internal index a = 1,2,3. The Lagrangian of ghost

fields C̄, C is determined by the background covariant derivative D̄µ(Ā) and the total one
Dµ(Ā+Q). As in [22], [23] we introduce the вЂќcharged basisвЂќ of fields:

A0
µ = A3

µ, A±
µ =

1√
2
(A1

µ ± iA2
µ), (8)

C0 = C3, C± =
1√
2
(C1 ± iC2).

In this basis a scalar product is xaya = x+y−+x−y++x0y0 , and the structure antisymmetric
factors are: ϵabc = 1 for a = вЂќ+вЂќ, b = вЂќ­вЂќ, c = вЂќ0вЂќ. Feynman’s rules are the
usual ones for the theory at finite temperature with modification: in the background field the
sum over frequencies should be replaced by

∑
k0
, k0 = (2πlβ ± gĀ0) in all loops of the fields

Q±
µ , C

±. Here, l = 0,±1,±2, .... This frequency shift must be done not only in propagators
but also in three particle vertexes.

Carrying out standard calculations we obtain the two­loop EP [4]

W (x) = W (1)(x) +W (2)(x), (9)

β4W (1)(x) =
2

3
π2[B4(0) + 2B4(

x

2
)],

β4W (2)(x) =
1

2
g2[B2

2(
x

2
) + 2B2(0))B2(

x

2
)] +

2

3
g2(1− ξ)B3(

x

2
)B1(

x

2
),

where Bi(x) are Bernoulli’s polynomials definedmodulo 1 adduced in Appendix of the paper
and x = gA0β

π , β = 1/T . This expression coincides with calculated already in [23], [24]. In
what follows we consider the interval 0 ≤ x ≤ 2.

Let us investigate the minima of it. We apply an expansion in powers of g and get

β4Wmin = β4W (0)− 1

192π2
(3− ξ)2g4,

x = g2
(3− ξ)

8π2
, (10)

where the first term is the value at zero field. Actually, an expansion parameter determined
from the ratio of two­ and one­loop contributions equals to g2

8π2 , and therefore sufficiently large
coupling values g are permissible. As we see, both the minimum position and the minimum
energy value are gauge­fixing dependent. Hence the gauge invariance of the A0 condensation
phenomenon is questionable.

This problem was solved within Nielsen’s identity method in [24], [25] for SU(2) and
SU(3) gluodynamics and in [26], [3] for QCD with quarks. Since this approach is important
for what follows, we describe it in short here.

In [27] Nielsen’s identity for general type EP has been derived:

δ
′
W (ϕ) = W,iδχ

i(ϕ̄), (11)

which describes a variation ofW (ϕ) due to variation of the gauge fixing term Fα(ϕ). In eq.(11)
ϕi is gauge field, ϕ̄i denotes a vacuum value of ϕi, comma afterW means variation derivative
with respect to corresponding variable. Variation δχi describes changing of field (ϕ̄) due to
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special gauge transformation which compensates variation of a classical action appearing after
variation of gauge­fixing function Fα(ϕ) → Fα(ϕ) + δFα(ϕ).

In field theory δχi is calculated from equation [27]:

δχi = −
〈
Di

α(ϕ)∆
α
β(ϕ)δ

′
F β(ϕ)

〉
, (12)

where
〈
O(ϕ)

〉
denotes functional average of O(ϕ). In this expression Di

α(ϕ) is generator of
gauge group, ∆α

β(ϕ) is propagator of ghost fields, δ
′
F β(ϕ) is variation of gauge fixing term.

In our case according eq.(7) δ′
F β(ϕ) = −1

2(D̄µ(Ā)Qµ)
β δξ

ξ , D
i
α is covariant derivative.

In [24], eq.(26), the expression was derived (more details on calculations and discussions for
SU(3) case see in [25], [3]):

δχ0 =
g

4πβ
B1(

x

2
)δξ. (13)

Nielsen’s identity for two­loop EP reads

dW

dξ
=

∂W (2)

∂ξ
+

∂W (1)

∂x

∂x

∂ξ
= 0, (14)

where in the order ∼ g2 the derivative ∂x
∂ξ equals to δχ0

δξ × (gβπ ) in eq.(13). The latter factor
comes from the definition of x = gA0β

π . SinceW (2) has the order g2, andW (1)­ g0, the eq.(14)
states thatW (x, ξ) does not change along the characteristic curve

x = x′ +
g2

4π2
B1(

x′

2
)(ξ − ζ) (15)

in the plain of variables (x, ξ), ζ is an arbitrary integration constant. Thus, there is the set of
orbits where W (x′) is gauge­fixing independent. Along them a variation in ξ is compensated
by the special variation of x′.

4. Effective potential of order parameter
In this section we, following [23], express the EP eq.(9) in terms of ⟨L⟩. We call it ”ef­

fective potential of order parameter”WL(xcl). In SU(2) group, in tree approximation, the PL is
expressed in terms of x as follows: ⟨L⟩ = cos(πx2 ). This formula can be used to relate a given
value of PL (or A0) and classical (observable) condensate value with accounting for radiation
corrections: ⟨L⟩ = cos(πxcl

2 ) = cos(πx2 ) + ∆ ⟨L⟩. The quantum correction was calculated in
one­loop order (eq. (10) in [23]),

∆ ⟨L⟩ = −
g2β sin(πx2 )

4π

∫
dk

k+0

[ 1

(k+0 )
2 + k⃗2

+
(ξ − 1)(k+0 )

2

((k+0 )
2 + k⃗2)2

]
, (16)

where the notations are introduced:∫
dk =

∫
d3k

(2π)3

( 1
β

∞∑
l=−∞

)
, k+0 = k0 + gA0, k0 =

2πl

β
. (17)

Eq.(16) is crucial for what follows.
Obviously that the first term in eq.(16) and the term at (ξ− 1) are positively defined func­
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tions and should have the same signs after integrations. The second integral in eq.(16) is well
known, it is expressed in terms of Bernoulli’s polynomials [22], [3],

I2 = −(ξ − 1)

4πβ
B1(

x

2
). (18)

Now, we return to the initial expression in eq.(16) and calculate the first term by using a
standard procedure. This is presented in Appendix of [4] and also in [7]. The result is

I1 = − 1

2πβ
B1(

x

2
). (19)

Substituting I1 and I2 in eq.(16), we obtain finally

∆ ⟨L⟩ =
g2 sin(πx2 )

16π2
B1(

x

2
)(ξ + 1). (20)

Just this formula should be used in order to express the field x in terms of ”classical observable
one”, xcl.

In particular, the relation between x and xcl looks as follows

x = xcl +
g2

4π2
B1(

xcl
2
)(ξ + 1). (21)

Within Nielsen’s identity approach, this formula corresponds to the choice in eq.(15) x′ = xcl
and ζ = −1. Along this orbit the EP is gauge­fixing independent and expressed in terms of ⟨L⟩.
In such a way these two methods are related.

Inserting eq.(21) in eq.(9) and expanding B4(
x
2 ) in powers of g

2, we obtain WL(xcl) =

W
(1)
L (xcl)+W

(2)
L (xcl), where the first term is obtained fromW (1)(x) by means of substitution

x → xcl and the second is

β4W
(2)
L (xcl) =

g2

2

[
B2

2(
xcl
2
) + 2B2(0)B2(

xcl
2
) +

8

3
B3(

xcl
2
)B1(

xcl
2
)
]
. (22)

In the WL(xcl) the ξ­dependent terms are mutually cancelled, as it should be and demonstrate
gauge­fixing independence.

We also note that the final expression for WL(xcl) can be obtained from W (x) eq.(9)
formally (omitting described consequent steps) by means of the next substitutions: x → xcl and
ξ → ζ = −1. As a result, according eq.(10) we get for the minimum values

β4WL(xcl)|min = β4WL(0)−
1

48π2
g4,

xcl|min =
g2

2π2
. (23)

Thus, the EPWL(xcl) has a nonzero minimum position and does not depend on ξ. The conden­
sation happens at the two­loop level. The minimum value of PL (corresponding to the physical
states) equals to: ⟨L⟩ = cos( g

2

4π ). In contrast, in [23] the value ⟨L⟩ = ±1 was obtained.
The expression −WL(xcl)|min = p eq.(23) describes thermodynamical pressure in the

plasma. The first term is β4WL(0) = −0.657974 + g2

24 . The functionWL(xcl) can be used for
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calculating Debye’s mass of neutral gluons defined as

m2
D =

d2WL(xcl)

dA2
0

|A0=0, (24)

remind, xcl =
gAcl

0
πT .We get

m2
D =

2

3
g2T 2 +

5

4

g4

π2
T 2. (25)

Here, first term is well known one­loop contribution and the second one is two­loop correction.
To complete we note that the A0 condensation is derived within the correlation of the one­

and two­loop effective potentials. Whereas asymptotic freedom at high temperature is realized
due to the correlation of the tree­level and one­loop contributions to the EP. Formally (as it is
often doing in the literature), the latter can be summarized by the replacement of coupling con­
stant g2 → ḡ2 ∼ g2

log(T/T0)
, T0 is a reference temperature. In both cases, the ratio of the relevant

terms is ∼ g2

4π2 . Hence at high temperature we can substitute g2 → ḡ2 in above formulas, in
particular, in eq. (23).

Thus, the value of the order parameter PL in the minimum of the EP is

⟨L⟩ = cos(
ḡ2

4π
). (26)

It gives a possibility for detecting the deconfinement phase transition and its type. Accounting
for the explicit expression for the one­loop effective coupling αs =

ḡ2

4π in the SU(2) case

ᾱs =
αs

1 + 11
3παs log(T/T0)

(27)

we see that the PL is continuously decreasing with temperature lowering and becomes zero at
ḡ2

4π = π
2 . This signals confinement. If we set Td = T0 the value of the ratio W (2)/W (1) is

∼ 1/2, that is in the range of applicability of perturbation theory. The phase transition is second
order, as it is well known for SU(2) gauge group. We note once again that due to the smallness
of the expansion parameter g2

8π our perturbation EP of order parameter is suitable function for
investigating the confinement­deconfinement phase transition.

An important observation, as we have seen, in order to obtain a ξ independent EP expressed
in terms of PL it is sufficient to set ξ = −1 in expressions of interest. This systematically will
be used in what follows.

5. The magnetic field at high temperature
Let us consider the case of chromomagnetic field at high temperature [10] and use eq.(59)

of [15]. The EP reads

W
SU(2)
gl =

b2

2g2
− π2T 4

15
− a1b

3/2T

2π
+

11b2 log(4πT/µ)
24π2

+ g2

(
T 4

24
− a2

√
bT 3

12π
+

a2
2bT 2

32π2

)
.

(28)

The first term is energy of classical field. The terms proportional to T 4 constitute the gluon
black body radiation. The contribution from the second loop is in the parenthesis. It has T 3
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behaviour. The numbers a1 = 0.828, a2 = 1.856 are calculated in [15], eq.(22). Note that the
one­loop part is ξ−indepedent and we set ξ = −1 in the two­loop part in order to get gauge
invariant EP.

In one­loop order, the energy eq.(28) has a non­trivial minimum resulting from the term
proportional to b3/2T . The condensate and the minimum EP are

bonemin =
9a1

2α2
sT

2

16π2
, W

SU(2), one
min = −π2T 4

15
− 27a41α

3
sT

4

512π4
, (29)

where αs = g2/(1 + 11
12

g2

π2 log(4πT/µ)) is running coupling constant, µ is a normalization
point for temperature. The first term of the energy is the gluon black body radiation. In this
approximation, the condensate is always present, and the energy in the minimum is always
negative. That means the spontaneous vacuum magnetization and SU(2) symmetry breaking.
Here also an imaginary term presents, but we consider the real part. The standard way to remove
the imaginary term of one­loop effective potential is adding the daisy diagram contributions
(see [5] for details). From eq.(29) we see that the presence of αs weakens the field strength at
high temperature.

We turn to the two loop case. We consider the high temperature limit and take into consid­
eration the ∼ T 3 term in eq.(28). Denoting as b1/2 = x, we obtain the third­order polynomial
equation for determining the condensate value:

x3 − 3

4π
a1Tαsx

2 − g2

24π
a2T

3αs = 0. (30)

The real root of it can be found using formulas from the standard handbook [29], Chapter 3.8.
The result is

x0 = b
1/2
min =

1

4

(2a2αs)
1/3

π1/3
T +

1

4π
a1αsT. (31)

If we compare this with eq.(29), we find that the second term is three times less than the one in
eq.(29). The most interesting is the change of the temperature dependence coming from α

1/3
s .

Hence, the first term is dominant for this case. For the field strength we get in this limit

bmin =
1

16

(2a2αs)
2/3

π2/3
T 2. (32)

Note also, the value a2 is larger than a1. As a result, the role of the second loop is important.
Formula eq.(31) was derived first in the literature in [10].

6. The minimum of the effective potential for pure A0

In this section, we remind the known results for the case of a pureA0­background discussed
in details in sects. 3, 4. For the case b = 0, the general effective action eq.(1) with eq.(5) is
expressed in terms of Bernoulli’s polynomials. We restrict ourselves to the main topological
sector and there to 0 ≤ a ≤ 1/2. Here, the EP has a minimum at a = amin (see also eq.(6)
in [24]) and takes in this minimum the valueW|a=amin

= Wmin with

(gA0)min =
3− ξ

16π
g2T, Wmin = −π2T 4

15
− (3− ξ)2T 4

192π2
g4. (33)
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As mentioned in [4], [32], eq.(33) coincides with the gauge­invariant result for ξ = −1, what
we assume in the following.

Let us compare eq.(33) with the minimal effective potential eq.(29) in the pure magnetic
case. We see in the latter case, the extra temperature dependent factor (1+ 11

12
g2

π2 [log(4πT )/µ)−1

is present and decreases the value of the magnetic condensate at high temperature. For the two
loop result eq.(32) the strength of the field is larger. But again at sufficiently high temperature the
α
1/3
s factor makes the value of bmin(T ) smaller compared to the value of (gA0)min eq.(33). As

a result, since both condensates have negative energies they should be generated. This decreases
the total free energy of the system. The same takes place for SU(3) gluodynamics and full QCD.

7. Induced Color charge
In this section, for QCD, we calculate the induced color charge generated by the tadpole

diagram of Fig. 1. In charged basis, we have two components of the induced charge for the shifts
A3

0 and A8
0. But accounting for the result [14] A8

0 = 0 , we have to calculate the contribution
for the case (A0)

a
µ = A0δµ4δ

a3. The explicit form in the Euclidean space­time is Q3
4Q

3
ind, and

we have

Q3
ind =

g

β

∑
p4

∫
d3p

(2π)3
Tr

[
λ3

2
γ4

p̂σγσ +m

p̂2 +m2

]
, (34)

where p̂ = (p4 = p4 ± A0,p), p4 = 2πT (l + 1/2), l = 0,±1, . . . . The trace is calculated
over either space­time or color variables, λ3 is Gell­Mann matrix. Here also we denoted as A0

the value A0 = gA0

2 . In what follows we use the Matsubara imaginary time formalism at finite
temperature.

Calculating the traces over the space and the internal indexes we get,

Q3
ind =

4g

β

∫
d3p

(2π)3

∑
p4

(p4 +A0)

(p4 +A0)2 + ϵ2p
, (35)

where ϵ2p = p⃗2 + m2. In case of nonzero field, ϵ2p = p23 +m2 + (2n+ 1)gH − gHσ. Here,
gH stands for any kind of magnetic field gH3, gH8, eH or even some combinations of chro­
momagnetic fields generated in the plasma at high temperature (see for details [13]). We have
two coupling constants and therefore returned to the H­notations. It is important also that all
the magnetic fields are oriented in one direction in coordinate space. In this case the EP of the
fields has minimal energy and so such type ones are generated spontaneously.

To calculate the temperature sum we use the following representation (β = 1/T is inverse
temperature)

Q3
ind = 4g

∫
d3p

(2π)3
β

π

∮
C
tan

βω

2

(ω +A0)

(ω +A0)2 + ϵ2p
dω. (36)

The contour C encloses clockwise the poles of tangent in ω­plane. This is in the case of zero
field. If the field is nonzero, we have to replace d3p

(2π)3
− > dp3

2π
gH

(2π)2
in correspondence to the

particle spectrum. The integrand function has two complex poles of first order in the ω­plane.
We deform and move the contour to infinity and calculate the residues of the integrand to find
the charge value.

The result, after transformation into spherical coordinates and angular integration, is
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Q3
ind =

g sin (A0β)

π2

∫ ∞

0
p2dp

1

cosβA0 + cosh(βϵp)
. (37)

In what follows, we calculate the integral in the high­temperature limit T → ∞. In this
case we use

ϵp =
√
p2 +m2 ≈ |p|+ 1

2

m2

|p|
(38)

because large values of momentum give dominant contribution.
After integration over momentum we obtain at zero field [14]

Q3
ind = gA3

0

[T 2

3
− m2

2π2

]
. (39)

As we see, the first term depends on temperature as ∼ T 2. The second one depends on mass,
only. At high­temperature, the first term is dominant and plasma acquires the spontaneous in­
duced charge in the casem = 0, also.

Now, we consider nonzeroH . Using the low Landau level approximation, σ = +1, n = 0,
we get after integration over p3 momentum

Q3
ind(H,T ) = g

gH

2π3

sin(A3
0β)

β
(1 + 7β2m2Zeta

′
(−2)). (40)

Note, numerically Zeta
′
(−2) = −0.03044485. Thus, one of the consequences of the A0 con­

densate presence is the Z(3) symmetry and the C­parity violation, which leads to the induction
of color charge in the plasma.

Let us compare the values of induced color charges given by formulas eq.(39) and eq.(40).
The first leading in temperature terms are of interest. Both expressions have the factor gA3

0

but a different temperature dependence. In former case, the factor ∼ T 2 stands and determines
high temperature behavior. In latter case, it is determined by the temperature dependence of
the magnetic field. This behavior has been investigated in sect. 5 in two­loop approximation
eq.(32). Because of the factor αs = g2/(1 + 11

12
g2

π2 log(T/µ)), the value of the field strength is
always smaller compared to T 2. As a result, the induced color charge eq.(40) in the magnetic
field is also smaller compered to eq.(39).

On the other hand, during carried out calculations we have taken the field strength as a
given number which is arbitrary. So that it can be the field produced by some external current.
In this case the induced color charge will be completely determined by external field. Such a
situation is expected and discussed for heavy ion collision experiments.

As we noted in Introduction, the factor gH marks different magnetic fields ­ usual magnetic
field eH , color magnetic fields gH3, gH8 or even some combination of them. For instance,
in [13] it was shown that in QGP at the LHC energies the combinations of fields H1

f = qfH +

g(H
3

2 + H8

2
√
3
),H2

f = qfH + g(−H3

2 + H8

2
√
3
),H3

f = qfH − g H8

2
√
3
, have to be spontaneously

produced, where qf is electric charge of quark species. The strengths of the fields at various
temperatures have been estimated. In particular, it was shown that the strength of color fields
is two order stronger compared to the usual magnetic one. The spectra of all charged particles
become discrete that influences and specifies the manifestations of QGP. It is also important that
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(as we noted above) all the generated fields are collinear each other in space.
It is also interesting that the field presence decreases the phase transition temperature. This

also has been obtained in analytic [13] and lattice computations [9], [11], [12]. As a general
conclusion of above consideration, the most important consequence of the induced chargeQ3

ind.

is the generation of classical static corol potential q3stat. that opens a possibility for new scattering
processes in the QGP. The magnetic fields modify them in an essential way. So, numerous
manifestations of the plasma creation could be observed in experiments. For example, these
influence the number of direct photons radiated from QGP, modify scattering of photons on it,
etc. These phenomena will be discussed elsewhere.

8. Effective γγG vertexes in QGP

Other interesting objects which have to be generated in the QGP with A0 condensate are
the effective three­line vertexes γγG3, γγG8. They should exist because of Furry’s theorem vio­
lation and relate color and white states. These vertexes, in particular, have to result in observable
processes of new type ­ inelastic scattering of photons, splitting (dissociation / conversion) of
gluon ϕ̄3, ϕ̄8 classical potentials in two photons. As we have shown above, Q8

ind is not gener­
ated in the considered approximation. But it is not excluded in higher­loop orders. So we have
to take in mind the second type vertex also.

In this section, we calculate the vertex γγG3 depicted in Fig. 2 and investigate some related
processes in the plasma. The vertex Γν

µλ consists of two such type diagrams. The second one is
obtained by changing the direction of the quark line. We use the notations: all the momenta are
ingoing, first photon γ1(k1µ), second photon γ2(k3λ), color a=3 gluonQ

3(k2ν), and k1+k2+k3 =
0. k1,2,3 are momenta of external fields.

We consider the contributions coming from the traces of four γ­matrixes, which are pro­
portional to the quark mass and dominant for small photon momenta k1, k3 << m. The analytic
expression reads

Γν
µλ(k

1, k3) = Γ
ν,(1)
µλ (k1, k3) + Γ

ν,(2)
µλ (k1, k3), (41)

where
Γ
ν,(1)
µλ (k1, k3) =

1

β

∑
p4

∫
d3p

(2π)3
N1

D(P̃ )D(P̃ − k1)D(P̃ + k3)
. (42)

Here β = T−1, summation is over p4 = 2πT (l + 1/2), l = 0,±1,±2, ..., integration is over
three dimensional momentum space p,N1 denotes the numerator coming from the first diagram,
P̃ = (P̃4 = p4 − A0, p⃗), D(P̃ ) = (p4 − A0)

2 + p⃗2 + m2 = P̃ 2
4 + ϵ2p and ϵ2p = p⃗2 + m2 is

energy of free quark squared. In case of nonzero field, ϵ2p = p23 +m2 + (2n+ 1)gH − gHσ as
in previous section. We also have to replace d3p

(2π)3
− > dp3

2π
gH

(2π)2
.

First we consider the zero field case. The functions D(P̃ − k1), D(P̃ + k3) assume a
corresponding shift in momentum. The numerator N1 is

(N1)µνλ = δµν(P̃ − k2)λ + δλν(P̃ − k2)µ + δµλ(P̃ − q)ν , (43)

where q = k3 − k1 is photon momentum transferred.
The expression for the second term in eq.(41) is coming from the second diagram and

obtained from eqs.(42), (43) by substitutions k1 → −k1, k2 → −k2, q → −q. We denote the
second numerator as N2. In what follows we carry out actual calculations for the first term in
eq.(41) and adduce the results for the second one.
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Now, we take into consideration the fact that in the high temperature limit the large values of
the integration momentum p give leading contributions. Therefore we can present the functions
D(P̃ ), D(P̃ − k1), D(P̃ + k3) in the form:

D(P̃ ) = P̃ 2
4 + ϵ2p = P̃ 2, (44)

D(P̃ − k1) = P̃ 2
(
1− 2P̃ · k1 − k21

P̃ 2

)
,

D(P̃ + k3) = P̃ 2
(
1 +

2P̃ · k3 + k23
P̃ 2

)
.

Here, k21 = (k14)
2 + k⃗21, k

2
3 = (k34)

2 + k⃗23 . At high temperature and P̃ 2 → ∞ the k­dependent
terms are small. So, we can expand in these parameters and obtain for the integrand in eq.(42)

Intd. =
N1

(P̃ 2)3

[
1 +

4∑
i=1

Ai

]
, (45)

where

A1 = −2
(P̃ · q)
P̃ 2

, A2 = −k23 − k21
P̃ 2

(46)

A3 = −4
(P̃ · k1)(P̃ · k3)

P̃ 2
, A4 = 4

(P̃ · k1)2 + (P̃ · k3)2

P̃ 2
(47)

and vector qµ = (q4, q⃗).
For the second diagram we have to substitute q → −q, other terms are even and do not

change.
Further we concentrate on the scattering of photons on the potential Q3

4 in the medium
rest frame and set the thermostat velocity uν = (1, 0⃗), ν = 4. The corresponding terms in the
numerators are

N1− > δµλ(P̃ + q)4, N2− > δµλ(P̃ − q)4, (48)

remind that P̃4 = p4−A0 and P̃ 2 = (p4−A0)
2+ ϵ2p. In this case the numerators do not depend

on space momentum and therefore also the magnetic field presence. So that we proceed further
with the zero field case and take the field into consideration when it will be necessary.

We have to calculate in general the series of two types corresponding to these numerators:

S
(n)
1 =

1

β

∑
p4

p4 −A0

(P̃ 2)n
, S

(n)
2 =

1

β

∑
p4

q4

(P̃ 2)n
, n = 3, 4, 5. (49)

These functions can be calculated from the S(1)
1 and S(1)

2 by computing a number of derivatives
with respect to ϵ2p. The latter series result in simple expressions. First is the one calculated
already for the tadpole diagram eq.(37). But now we have to change the sing A0 → −A0.

S
(1)
1 =

1

β

∑
p4

p4 −A0

P̃ 2
= −1

2

sin(A0β)

cos(A0β) + cosh(ϵpβ)
. (50)
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The function S(1)
2 is

S
(1)
2 =

1

β

∑
p4

q4

P̃ 2
= − q4

2ϵp

sinh(ϵpβ)
cos(A0β) + cosh(ϵpβ)

. (51)

Hence, the explicit analytic expressions can be obtained for the integrand and the integration
over d3p is carried out in terms of known functions and their derivatives.

Let us adduce the expressions for Ai obtained after some simplifying algebraic transfor­
mations:

A1 = −2
(p4 −A0)q4

P̃ 2
, (52)

A3 = − 4

P̃ 2

[
(1−

ϵ2p

P̃ 2
)k14k

3
4 +

(p⃗ · k⃗1)(p⃗ · k⃗3)
P̃ 2

]
, (53)

A4 =
4

P̃ 2

[
(1−

ϵ2p

P̃ 2
)((k14)

2 + (k34)
2) +

(p⃗ · k⃗1)2 + (p⃗ · k⃗3)2

P̃ 2

]
, (54)

Accounting for the structure of the numerators in eq.(48), we see that the terms without P̃4 are
canceled in the sum of two diagrams and the resulting amplitude consists of the expressions

M1 = 2δµλ
p4 −A0

(P̃ 2)3
(1 +A1 +A3 +A4) (55)

and
M2 = −4δµλ

(p4 −A0)q
2
4

(P̃ 2)4
. (56)

Thus, all the contributions of the S(n)
2 series are canceled in the total.

Now we tern to d3p integration. The expressions in eqs.(55), (56) contain different powers
of P̃ 2, and hence different powers of β appear even in the leading p → ∞ approximation, which
corresponds to the first term in the expansion ϵp = p + 1

2
m2

p + O(p−3). Below, we carry out
integration in this leading in T → ∞ approximation.

We present our procedure considering the first term in eq.(55) which is calculated as the
second derivative of S(1)

1 over ϵ2p and equaled to

S3 = −A0β
(Sech(βϵp/2))

4

64p3
(−2βϵp + βϵpCosh(βϵp) + Sinh(βϵp)). (57)

Then in spherical coordinates we calculate the integral

I3 =

∞∫
−∞

d3p S3 = 4π

∞∫
0

p2dp S3(p). (58)

In leading order ϵpβ = pβ. Making the change of variables pβ = y we obtain for eq.(58),

I3 = −A0πβ

16

∞∫
0

dy

y
(Sech(y/2))4(−2y + yCosh(y) + Sinh(y)). (59)
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Note that this integral is convergent. Numeric integration in eq.(59) gives

I3 = −A0πβ (0.3348). (60)

In such a way all the other integrations in eqs.(55), (56) can be carried out.
Performing analogous calculations for other terms we obtain the expression for scattering

amplitude in high temperature approximation. A not complicated problem is to find next­to­
leading corrections having the order (mβ)l, l = 1, 2, ...As a result, the explicit high temperature
limits for the scattering amplitude can be calculated in terms of elementary functions.

Now, we consider the case of non zero magnetic fields. As mentioned before, the expres­
sion eq.(57) independs of the magnetic field presence and does not change. In the lower level
approximation n = 0, σ = 1 we have ϵ2p = p23 +m2. So, for large momenta ϵp = p3(1 +

1
2
p3
m ).

The expression eq.(58) now has the form

I3 =

∞∫
−∞

d3p

(2π)3
S3 =

∞∫
−∞

dp3
2π

gH

(2π)2
S3(p3). (61)

The integrand function is even with respect to the change p3 → −p3, so we can calculate two
integrals in the limits (0,∞). Performing numeric integrations we obtain,

I3(H) = gHA0β
3 (0.0283). (62)

Here, for magnetic field gH different variants can be substituted, as it is noted in previous sec­
tions. The most important conclusion is that in magnetized QGP various processes generated by
these effective three­linear photon­photon­gluon vertexes have to happen. They should serve as
the signals of the deconfinement phase transition. Since magnetic fields depend on temperature
in the described above way, corresponding numeric estimates (and numbers) could be obtained
for investigated processes.

Among interesting processes is the conversion of classical static gluon fields ϕ̄3(k), ϕ̄8(k)
(generated in the plasma due to the color charges Q3

ind., Q
8
ind.), in photons. This conversion

formally looks as a super radiance in condense matter physics (because of static initial states).
Due to the effective vertex Γν

µλ(k
1, k3), in the rest frame of the plasma two photons moving

in opposite directions and having specific energies, which correspond to quantum or classical
states, have to be radiated. In fact, one has to detect a classical photon flow corresponding to
the decaying classical state.

One of the consequences of this effect has to be an increase of calculated in the literature di­
rect infrared photons radiated from the QGP in heavy ion collisions. The increase acts to remove
the deficit of direct low frequency photons compared to the experimental data. Independently
of the process resulting in direct photons, there exists a cut in photon frequency which can be
radiated from the plasma. The A0 condensate lowers this frequency and in this way increases
in theory the yield of direct low frequency photons. More details see, for instance, in [33] and
references therein. The magnetic fields modify the vertex Γν

µλ(k
1, k3) that also influences the

output of direct photons as well.
These processes could serve as the signals of the QGP creation.
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