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Bogolyubov's reduced description method is based on his functional hypothesis. The reduced
description of system's nonequilibrium state occurs over long-time scales t >> t,,. The synchronization time
T, determines the set of reduced description parameters {n,(t)}, which fully describe the state of the
system. The problem of finding the statistical operator of the system at the time of reduced description
p(n) and the effective initial values of the reduced description parameters {n,(0)} is posed and solved.
This problem is solved only if there is a small parameter in the theory, with which the perturbation theory
is built. The mathematical structure of the operators of the reduced description parameters {f,} and the
Hamilton operator of the system H plays the main role in this. The paper investigates the Peletminskii—
Yatsenko model, in which H =H,+H,, H,~A", H,~A' (A<<1), and the operators {H,,7,} form a Lie

algebra. The kinetics of the slow variable model, in which [H Ma]l~ At (A <<1), is also investigated. In these
models, integral equations for the statistical operator p(n) and the effective initial values of the reduced
description parameters {n,(0)} are derived. Their solutions are investigated in the main and first orders
of the perturbation theory for a small parameter X . The right-hand sides of the time equations for the
reduced description parameters L,(n) are investigated with accuracy up to the second-order contributions
for L. The paper thoroughly discusses the basic concepts of the reduced description method with remarks
that supplement existing literature. In the Peletminskii-Yatsenko model, complex relations are proved that
are given in the literature without justification or proved too complicatedly (in particular, this concerns the
derivation of the integral equation for the initial values of the parameters {n,(t)}). In our study of the
model of slow variables, the operators of the reduced description parameters {n,} are not specified, which

leads to the implementation of the reduced description with rather complex algebra and operator analysis
calculations. At the same time, a reasonable degree of details in the construction of the reduced description
of the system is chosen.
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1. Introduction

The theory of non-equilibrium processes is an important component of modern
theoretical physics. The main approach of this theory — the method of reduced description of
non-equilibrium systems — was developed by M. M. Bogolyubov in the 1940s. The
systematic development of this method since the 1960s was carried out by S. V. Peletminskii,
who, together with his students, investigated the general issues of the method and applied it
to a number of systems and non-equilibrium processes in them. The history of the creation of
this method can be traced to some extent in publications [1-9], although the list of which is
actually incomplete. The research was largely aimed at improving the derivation of the
Boltzmann Kinetic equation and constructing gas dynamics based on it, taking into account
dissipative processes. The monograph by M. M. Bogolyubov "Problems of Dynamic Theory
in Statistical Physics" (1946), the main idea of which was, according to J. Uhlenbeck (1958),
the idea of a functional hypothesis. Several researchers believe that its origin is associated
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with the method of S. Chapman and D. Enskog, although M. M. Bogolyubov himself (1946)
linked it to his research on nonlinear mechanics. The final formulation of the functional
hypothesis was developed by S. V. Peletminskii and summarized in his monograph with A. 1.
Akhiezer "Methods of Statistical Physics" (1977), where the task of proving it was set.

This article is based on the aforementioned studies and takes into account a number of
the authors' work in connection with the further development of the theory, its applications,
and its teaching to students. In particular, this concerns a special course at the PhD level
“Principles of Physical Kinetics and Plasma Theory” and a special course at the Bachelor
level “Computer Methods for Research of Nonlinear Physical Systems”. The materials of the
article were used in conducting online classes via the Internet. Therefore, the proof of various
statements is presented in greater detail than is usually the case in educational literature.

The work has the following structure. The Introduction gives a brief overview of the
creation of a method for the abbreviated description of non-equilibrium processes. Section 2
discusses the reduced Bogolyubov method and its implementation in the Peletminskii—
Yatsenko model. Section 3 is devoted to the implementation of the kinetics of slow variables
in the reduced description method. Sections 2, 3 consist of logical subsections, important
fragments of the subsections are highlighted in bold italics.

2. Bogolyubov reduced description method (RDM) and its realization
in Peleminskii-Yatsenko (PYa) model
2.1. Bogolyubov functional hypothesis
The non-equilibrium states of the system are described by the average values
Spp(t)n, of some parameters, where 1, are the operators of these parameters (a is the

parameter number).
Our study of non-equilibrium states is based on Bogolyubov's RDM [6, 8] according to

which the statistical operator (SO) of a non-equilibrium system p(t) at large times t >> 1,
depends on time and the initial state of the system p(t=0)=p, only through the averages of
a limited number of parameters n,(t,p,)

p(t) —=—r((t.po)) (Spp(m)=1, Spp()i,=n,) (1.1)

They are called the reduced description parameters (RDPs) and defined by the formula

SPP(ONa —>Ma(t: o) (1.2)

(n, are RDP operators). Relation (1.1) is named the functional hypothesis and value t, is
called the synchronization time. The set of RDPs {n,(t,p,)} is determined by the
synchronization time t, and the reduced description by these parameters is observed at
times t >>1t, . The arrows in formulas (1.1) and (1.2) indicate that their right parts are the

asymptotics of the left parts. It is convenient to write the solution of the quantum evolution
equation using the Liouville operator L

ap=Lp®), Lp=_[pHl;  p)=e"p, (13)

where H is the Hamilton operator. The leading statement of the RDM is that the SO
p(n(t,p,)) exactly satisfies the Liouville equation

4
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o,p((t,p,)) = %[p(n(t, po)). H1 (L.4)

for t >> 1, and the parameters n,(t,p,) exactly satisfy the time equation

oo =L ko) L) =TSpp(DIH ] 19)

for t>>r1,.

In RDM applications it is important to study the influence of the initial state of the
system on its evolution [6, 8]. To consider the Cauchy problem, the solutions of equations
(1.4) and (1.5) can be continued to t =0, although they describe the system evolution only
for t>>1,. Herewith, the values of the functions n,(t,p,) at t=0 are called effective

initial conditions.
Taking into account the expression (1.5) for the function L,(n), the SO p(n) satisfies

the nonlinear differential equation

op(m) i 1
- = 1H L] .
. o L.(m)=-Tp(m). H] (1.6)
which can be solved only approximately in some perturbation theory. The case of the
Hamiltonian H = H, + H, with the main H, and small H, parts is particularly important in

the paper. Formally, H ~ 1°, Hl ~ A where A is a small parameter.
2.2. Peletminskii—Yatsenko model of the reduced description

Consideration of non-equilibrium states of the system begins with the selection of RDPs
and their operators 7, . The previous development of the theory of non-equilibrium processes

is the basis for this work. At the same time, the modern trend is to expand the set of RDPs by
taking into account non-equilibrium correlations (fluctuations) of the studied RDPs.
A constructive approach to the selection of RDPs was proposed by Peletminskii and

Yatsenko using the symmetries of the basic Hamiltonian HO. This led them (see the original

paper [10], as well as [8]) to the PYa model, in which the RDPs operators satisfy the
condition

[Ho. Rl = Zbcabﬁb : (1.7)

where ¢, is a C-number matrix. Based on (1.7) Peletminskii and Yatsenko established the
functional hypothesis in the basic approximation of the perturbation theory in Hl [8]

et A
e'op, —= > Pa(Z(€" Sppen)) (1.8)
where
i . i . Tot
Lop= E[p, Hol,  Lofla= —%Zbcabnb . e (Z(M)) =p(Z(e" M) (1.9)
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(in terms of [8], the relation (1.8) is called ergodic, since it is connected with the ergodic
hypothesis by the authors). The last formula (1.9) was not obtained in [8], although it
should be fulfilled within the RDM framework and is used significantly by us further on.

Formulas (1.7), (1.8) include the SO p, (Y)
Po(Y)=exp{Q(Y) = YA}, Spp,(Y)=1 (1.10)

which is called the quasi-equilibrium SO (it is close to the equilibrium SO in certain cases).
Functions Z,(n) in (1.8) are determined by the condition

Sppy(Z(M)M, =M, - (1.11)

The formulas (1.9) show that these functions satisfy the condition

Z,me"™) =3 7, (e (1.12)

at arbitrary t since the equality Y, =Y, follows from p,(Y;) =p,(Y,). (1.12) results in a
certain restriction on the matrix c,, and function Z_(n). It will be investigated further.

2.3. Integral equation for the statistical operator p(n) of PYa model
and its detailed solution
Bogolyubov showed that the equation (1.6) for the statistical operator p(mn) is invariant
with respect to time inversion and should be supplemented with a boundary condition that
selects the physical direction of time [6]. As such a condition, the authors of the model
selected the functional hypothesis (1.8) for SO p, =p(n) taking here the form

tL,

ebop(n) ——p, (Z(e" M) - (1.13)

t>>14

(1.13) is written in terms of evolution in the physical direction of time. This relation made it
possible to obtain a nonlinear integral equation from the nonlinear differential equation (1.6)

O iCT
P = py(Z () + [ dee ™ +F (e ), (114)
where denoted
f =3[t H -3, T, . M, () =+ Spp(IFL ] (115

In these terms the right-hand side of the time equation (1.5) for RDP n,(t,p,) with
considering (1.7) takes the form

L.(m) =%anmb +M,(m). (1.16)

To obtain integral equation (1.14), we rewrite boundary condition (1.13) in the form

ople 1) ——pa(Z(). (L17)

T—>+00

e
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Formulas (1.6), (1.15), and (1.16) lead to the identity

9o tL”p(ehrn) eTL"(%[p(”l),F‘o] > p(”)lcbanaj e

8 ab b

noe i

(1.18)

=e's (—%[pm), Hﬂ@agé”) Ma(n)] L =EhfE ),

.
a noe ' n

Integrating both sides of this relation over t in interval (0,+0), considering (1.17), gives the
necessary equation (1.14).

Equation (1.14) can be solved by an iterative procedure in perturbation theory by I—A|l
because its integrand expression has the first order in this operator. For the SO p(n) we have

p(n) = ip(”’ M, PP (M)=p(ZM)),
i _ oo (2(0) (1.19)
p(m = [ dre {%[pq (Z(n))ﬁl]—g—p“ana” Mé”(n)}

noeh

The right-hand side L,(n) of the time equation for RDP is given by the relations (1.14),
(1.15), and formulas

ML) =3 MO, ME() =P, 20 [ i, ]

| (1.20)
M () =—Spp® (m)[ Hy 7, .
Let us calculate M? (n) using (1.8), (1.15), (1.19), and (1.20)
2 i | v e Yot ) . op,(Z(M)
MO ()= j deSp| H, 7, et {%[p“(z(”»’HJ_gqa—Mé)(“)}Mzmn -
0 . '2 a Z h
:jdrSp[Hlyﬁa]{ {pqa(e “aH )}——Z%Mb(n) -
—— [ desp[Fu i, J[pa(2 (). F(9)]-
o oSpp (_Eo(e’%“n»[ﬁ , | 2
B D B e ICAWNI L N

o [asso[ A, [, 200 A0 ]

O (a1
__Jd aM (e n) i Sppq(Z(e” T]))[Hlyﬁb]-

b n—e’ n
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The last term here can be simplified as

oM W eigcT T A A
SMEI - sppz e A, A=

b g noet
MEPM) ot e
= = () €4 SP[H,, 7, Je" Pe(Z(M) =
ba  ONg
MY () o Lerd
> M e spp, 2 m)e T, ] =
ba  ONg
e o (1.22)
_ ) €1 SPP,(Z(N)[e ™" H, e ™R, ] =
ba  ONg
MO(m) i j
-y M e spp @A, (). Ten i)
bae ONg )
oM @ ~ A
=y Mo Wy ZEiA, (). 4,]
5 On

That leads finally to the following expression for the second order contribution M?(n) to
the right-hand side L,(n) of the time equation (1.5) for RDPs

(1.23)

‘ . . )
M;Z)(n)z—;_l—l2 I dTSppq(Z(n)){Hl(T)’[Hliﬁa]wLihzbﬁb oM, (Z(n))}

on,
given without proving in [8].
1.4. Improved derivation of the integral equation for effective initial conditions
of the PYa model

Let us consider the calculation of effective initial conditions n,(0,p,), Somewhat
simplifying the approach of [13]. From (1.7) we consistently have

L A L ‘o
0 Spp(t)fia =--SpPV[H . N] =EZCab Sppt), +—SPPOH, Al
b
o . —icti A
o y.el Sppt)f, =D e ~SPPO[HL A, ], (1.24)
b b
T . . ¢ —%cri A
e b SpP(f, ~Sppeily =X [dte & —Spp(r)[Hy .
b b o

According to (1.3) and (1.4), p(t) and p(n(t,p,)) satisfy the same time equation and
therefore the following formulas are valid

ek Spp(n(t.po))it, —SpP(n(0.po))it, =

b

Cin ) (1.25)

=X Jdwe b Spp(n(po)[H: ],
b o
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—%ct ¢ —%mi A
e b Mo(t:po) —1a(0,po) = X [de b —Spp(n(r,po)[Hy iy]-
b b o
The last formula is analogous to the last one in (1.24). Their difference has the form

D& Spp()f, —SPpeiia — D & My(tPo) +M4(0,pp) =
b b
i A (1.26)
=X Jdve & —Sp{p(e) —p(n(t,po)HH iy
b o

In this relation, considering the functional hypothesis and the definition of the function
Na (t,pg) , it is possible to go to the limit t — +oo, which gives

10(0,90) ~SPpol, = X [ dee &1 SpEo(e) - p(n(s. poNHF ]
"o (1.27)

Taking into account formula (1.3), its analogue for p(n(t,p,)), and the identity
Sp(e'-a)b =Spae'"b, leads to the integral equation for n, (0,p,)

. I ed
M2(0,p0) =SPpofly + 3. | dee - —-Sp{po —p(n(0,po))}e ™ [Hy, y]. (1.28)
b o

This integral equation was obtained in [8] by a more complicated procedure. It is solved in
the perturbation theory in interaction Hl, which, in accordance with (1.18), gives

Ma(0,py) =Sppofi, +

[ desSotpy -, (PR MHA@.A1+007) (R =e k). &%)
0

This formula makes it possible to investigate the Cauchy problem in the P'YYa model for
an arbitrary initial state of the system described by SO p,.

2. Bogolyubov RDM and its realization in kinetics of slow variables
2.1. Kinetics of slow variables in the RDM

Operators 7, of slow variables n, satisfy the condition [H,ﬁa]~x, A <<1 where H
and A are the Hamiltonian of the system and a small parameter. The Liouville operator L

A

for an arbitrary operator & is defined by the expression Lé:%[é, H]. A most important

theory of slow variables is hydrodynamics, in which 7, =, (k <k,~A<<1) where {,, is

the Fourier transform of the integral equation density én(x) for the considered system [12].
Complete kinetics of slow variables needs calculating the SO p(n) and effective initial
conditions 1, (0, p,) . According to (1.1), (1.5), and (1.6) one must solve the set of equations
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Zap(n) La(n) = Lp(T]) ’ La(T]) =SpﬁaLp(1”l) ’ Sp p(n)ﬁa =Ma - (21)

a a

The system considered is invariant with respect to time reversal. Therefore, one needs ad to
(2.1) a boundary condition that accounts for time evolution in the physical direction of

time. With this purpose, here the functional hypothesis is taken. According to (1.1), it is given
by p(t)——p((t,p,)) Where p(t)=€""p, and p(n(t,p,))=€'"p(n(0,p,)) for t>0

>>1

because of (1.3) and (1.4). Therefore (1.1) leads to useful asymptotic relations
e'“[py —p(M(0,po))]——0, lim e [p, —p(n(0,p,))] =0 2.2)

that can be used as the necessary boundary condition. The last formula is written witht
instead of t to stress its mathematical sense without connection to time evolution. It is
equivalent to the relation

P(N(0,pe)) —po = [ dre™Llp, —p(n(0,p))] (2.3)

that can be considered as the boundary condition in the integral form.
The only drawback of relations (2.3) is the presence of an arbitrary SO p, in it. In the

theory of non-equilibrium processes, a significant role is played by the SO p,(Y) determined
by the formula
Q(Y)-2 Yafa

po(Y)=e =, Sppy(Y)=L. (2:4)

It includes microscopic variables 7, of the RDPs n,, some parameters Y, and the function
Q(Y) to be found from the normalization condition. This SO is often called quasi-

equilibrium, since in a few cases it is close to the equilibrium SO. An important role is played
by the effective initial conditions m,(0,p,(Y)), which correspond to the SO p,(Y), and the

inverse function Y, (n) to the functionn, (0,p,(Y))

Na(0,p (Y (M) =M, Ya(Ma(0,pg(Y)) =Y, . (2.5)

The first of these formulas allows us to rewrite the boundary condition (2.3) directly in terms
of SOp(n)

p(M) —py(Y(M)) = f dte™Llp,(Y () —p(m)] (2.6)
0
that is more suitable for further applications.
2.2. Integral equations for SO p(n) and effective initial conditions n,(0,p,)

in kinetics of slow variables and their solution

Considering the Liouville equation at the reduced description (2.1) in relation (2.6) we
obtain

10
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pn) =Py (Y () + j de™ Loy (Y (m) - Za"(”)L . @27)

Equation (2.7) should be solved with taking into account the last two relations from (2.1) that
give functions Y,(n) and L,(n). This formula can be considered as an integral equation for

the SO p(n) solvable by iterations in small parameter A because
L. (n) =SpALp(m) ==Sp(LA)p(m) ~2  (SP(LA)B =-SpALB);

1
Lp=[dup*™(LInp=SpLInp)p* =>
P !up (LInp—SpLInp)p 2.8)

Lpg(Y)==[dupg(Y)" ™ Ya(Lii, =Sppq (Y)LA,)pg (Y) ~ 2.

Let us multiply equation (2.3) by the microscopic value of RDP 7, and take Sp from the
resulting expression. With the last formula (2.1) it gives the relation

Na(0,p5)) ~SPAapo = | dTSpA,e™ Lo —p(n(0,po))]
0

or equation

Na(0,P0) =SPPoRa + | dTSP(LA,)e™ [p(n(0,p0)) — pol- (2.9)

which can be considered as an integral equation for effective initial conditions m,(0,p,)

solvable by iteration over a small parameter A .
The solution of the integral equation of (2.7) is investigated in the form of three
expansions in powers of A

p) = +pPM+00H), Y. =Y ) +Y () +00.3), (2.10)

L (m) = L2 () + LY () + O(2°).
From equations (2.1) and (2.7) for the quantities p(n) and Y,(n) in the main and first order
of the perturbation theory, it is obtained

+o0 . W
pP=w, ¥ =p (Y)¥ + [ due L(Lw_zan '-(al)];
0

a a

(2.11)

Spwﬁa = na 1 Spp(l)ﬁa = O
where the designations

w=pZ(M),  Z,)=Y"Mm), PM)=QZMW) (2.12)

were introduced. The main contributions to the right-hand sides of the equations for RDPs
accordingly (2.1) have the form

L(al) - Sp WTT]a ’ LgZ) =Sp p(l)ﬁa (ﬁa = _Lﬁa ) (213)

11
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Let us proceed to the calculation of the SO p® () from (2.11). The first contribution to
it is given by

po(Y ()@ ==Y Y [ dw™ (i, —n W (2.14)

taking into account for the formula
L eA(1+I;due’”Al§e”A +0(é2)) (2.15)
and expressions (2.4), (2.11), and (2.12) (in (2.15) A and B are arbitrary operators; about

operator algebra and analysis calculations see our book [13]).
Under the integral in (2.11) the expressions are necessary

Lw= j:dpw(l’“) (LInw-SpwL Inw)w* = Zaza.[;d pw®H (R, —Spwn, ) wh
LY = Spwiy, = -SpwLf, =Sp(LW)A, = (2.16)
=Sy, Z, [ duw® ) (A, —Spwiy) Wi, = ¥, Z, (. 0,)
where the symmetrical bilinear form
(A,B) = j;d LSpW (A — SpwA)wHB (2.17)
is introduced.

The multiplierﬂ in (2.11) at LY using the formulas
an a

a

ow _y py (V)| 0z, (n)
M, b oY, |Y—>Z(n) Ma

1 ~
=—[ W (R W (2.18)
Y >Z(n)
n . . OZ
SpWhl, =M, => D (Ml fla) 22 = 84
one

0 AW _ [y, a@wA) O WAty _o P
—e™ = due™ (= A(X))e =1
~ [ du (5, A) ~

a

can be written as
oW 1 R N
—= == | duwt ™ (R, =, )W (R ) (2.19)
a

and therefore with (2.16)

ow 1 A A Ay 2 A
Dy e = 20 Jo A (R~ )W (s o) 2o e ) (2.20)
a ab,c

Now the integrand in (2.11), taking into account (2.16), takes on a compact form

L= 3 200 = 3 7, [ e (Q, ~Spwi, @2y

a a

where the operator Q (see [12]) is introduced by

12
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Q=1-P, PA=>" (A7, 1) s - (2.22)

ab

The final expression for the SO p®(n) from (2.11) and (2.14) together with (2.21) has
the form

1 /A
o= Y [0 -+

b el g - (2.23)
+ZaZaIO dt Iodpe W (Qn, — SpwQn, )W .
The average value of the quantity Awith SO (2.23) is given by the expression
SppPA=-Y Y@, A)+Y 2, EO&‘C Q1. A1) 2.2

(At)=e'A, Spe'"AB=SpAe'B)
where bilinear forms (2.17) are used. The condition (2.11) Spp®(n)f, =0 and formula
(2.24) give expression for Y%

YO =Y 7,[ At (@, A, (D) Ry 1) (2.25)
Substituting this expression into formula (2.23), we obtain
Spp”A=3" Z,[ dr (Qn,, QA(R)). (2.26)

From (2.13), (2.16) and taking into account formula (2.26), we sequentially obtain
contributions of the first and second order in the small parameter of the theory A to the time
equation for the RDP kinetics of slow variables

Lgl) ZSDWﬁa = szb(ﬁb’ﬁa) '
(2.27)

LY =Spp®™, = Y, Z, [ dt (QA,, QA (1))
The effective initial conditions n,(0,p,) for time equations (1.28) can be found from
the integral equation (2.9) by perturbation theory in A that gives

M1.0,p0)=nP +nP+0?), NP=n, (N0 =SPPoa);

2.28
n® = j dSp[p, —W(N,)IN,(7) o

because according to (2.11) and (2.12) p®(M)=py(Z(M))=w(n). Further, formula
Sp(pg —wW(n,))h, =0 with definition (2.22) of operator P gives the identity
Sp(p, —W(n,))PA = 0and allows us to rewrite n$ in the form

Y = j deSplp, —W(no)1QN, (1) - (2.29)

Thus, the effective initial condltlons M. (0,p,) are calculated coherently.

13
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3. Conclusions
The work is based on the Bogolyubov’s method of reduced description of non-
equilibrium states. Its basic ideas are carefully discussed with remarks that supplement the
existing literature. The initial idea of the method is a functional hypothesis that briefly (by
relatively small amount of parameters) describes the system at large times t>>1, (7, is a

characteristic time). Attention is drawn to the need of taking into account the physical
direction of evolution in time by using a boundary condition that violates the invariance
relative to time. A useful idea is to formulate it as the functional hypothesis in a simple case
of a quasi-equilibrium distribution. The fruitfulness of the idea of extending the values of
reduced description parameters to non-physical times and introducing effective initial
conditions is noted in the paper.

The paper investigates the implementation of the reduced description method in the
Peletminskii—Yatsenko model and in the slow variables model. In these models, there is a
small parameter, on the basis of which the perturbation theory is built for calculating the
guantities introduced at the reduced description of the system (statistical operator, effective
initial conditions). For them, the corresponding integral equations are obtained, which are
solved by iterations.

In the Peletminskii—Yatsenko model, the contribution view of the second order of
smallness to the time equations for the RDPs is proved rigorously, and a simple derivation of
the integral equation for the effective initial conditions is proposed. In our study, the
parameters of slow variables are not specified, which leads to significant complication in the
implementation of the reduced description. In this case, we propose reasonable techniques for
solving the problem referring to our book on additional questions of quantum mechanics
including the innovative consideration of the kinetics of slow variables.
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