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Bogolyubov's reduced description method is based on his functional hypothesis. The reduced 

description of system's nonequilibrium state occurs over long-time scales 0t   . The synchronization time 

0  determines the set of reduced description parameters { ( )}a t , which fully describe the state of the 

system. The problem of finding the statistical operator of the system at the time of reduced description 

( )   and the effective initial values of the reduced description parameters { (0)}a  is posed and solved. 

This problem is solved only if there is a small parameter in the theory, with which the perturbation theory 

is built. The mathematical structure of the operators of the reduced description parameters ˆ{ }a  and the 

Hamilton operator of the system Ĥ  plays the main role in this. The paper investigates the Peletminskii–

Yatsenko model, in which 0 1
ˆ ˆ ˆH H H  , 0Ĥ ~ 0 , 1Ĥ ~ 1  ( 1  ), and the operators 0

ˆ ˆ{ , }aH   form a Lie 

algebra. The kinetics of the slow variable model, in which ˆ ˆ[ , ]aH  ~ 1 ( 1  ), is also investigated. In these 

models, integral equations for the statistical operator ( )   and the effective initial values of the reduced 

description parameters { (0)}a  are derived. Their solutions are investigated in the main and first orders 

of the perturbation theory for a small parameter  . The right-hand sides of the time equations for the 

reduced description parameters ( )aL   are investigated with accuracy up to the second-order contributions 

for  . The paper thoroughly discusses the basic concepts of the reduced description method with remarks 

that supplement existing literature. In the Peletminskii–Yatsenko model, complex relations are proved that 

are given in the literature without justification or proved too complicatedly (in particular, this concerns the 

derivation of the integral equation for the initial values of the parameters { ( )}a t ). In our study of the 

model of slow variables, the operators of the reduced description parameters ˆ{ }a  are not specified, which 

leads to the implementation of the reduced description with rather complex algebra and operator analysis 

calculations. At the same time, a reasonable degree of details in the construction of the reduced description 

of the system is chosen. 
Keywords: functional hypothesis, reduced description method, reduced description parameters, effective 

initial values, Peletminskii–Yatsenko model, slow variable kinetics model. 
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1. Introduction 

       The theory of non-equilibrium processes is an important component of modern 
theoretical physics. The main approach of this theory – the method of reduced description of 

non-equilibrium systems – was developed by M. M. Bogolyubov in the 1940s. The 

systematic development of this method since the 1960s was carried out by S. V. Peletminskii, 
who, together with his students, investigated the general issues of the method and applied it 

to a number of systems and non-equilibrium processes in them. The history of the creation of 

this method can be traced to some extent in publications [1–9], although the list of which is 
actually incomplete. The research was largely aimed at improving the derivation of the 

Boltzmann kinetic equation and constructing gas dynamics based on it, taking into account 

dissipative processes. The monograph by M. M. Bogolyubov "Problems of Dynamic Theory 

in Statistical Physics" (1946), the main idea of which was, according to J. Uhlenbeck (1958), 
the idea of a functional hypothesis. Several researchers believe that its origin is associated  
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with the method of S. Chapman and D. Enskog, although M. M. Bogolyubov himself (1946) 

linked it to his research on nonlinear mechanics. The final formulation of the functional 
hypothesis was developed by S. V. Peletminskii and summarized in his monograph with A. I. 

Akhiezer "Methods of Statistical Physics" (1977), where the task of proving it was set. 

This article is based on the aforementioned studies and takes into account a number of 
the authors' work in connection with the further development of the theory, its applications, 

and its teaching to students. In particular, this concerns a special course at the PhD level 

“Principles of Physical Kinetics and Plasma Theory” and a special course at the Bachelor 

level “Computer Methods for Research of Nonlinear Physical Systems”. The materials of the 
article were used in conducting online classes via the Internet. Therefore, the proof of various 

statements is presented in greater detail than is usually the case in educational literature. 

The work has the following structure. The Introduction gives a brief overview of the 
creation of a method for the abbreviated description of non-equilibrium processes. Section 2 

discusses the reduced Bogolyubov method and its implementation in the Peletminskii–

Yatsenko model. Section 3 is devoted to the implementation of the kinetics of slow variables 

in the reduced description method. Sections 2, 3 consist of logical subsections, important 
fragments of the subsections are highlighted in bold italics. 

2. Bogolyubov reduced description method (RDM) and its realization                              

in Peleminskii–Yatsenko (PYa) model 

2.1. Bogolyubov functional hypothesis  

The non-equilibrium states of the system are described by the average values 

ˆSp ( ) at of some parameters, where ˆ
a  are the operators of these parameters ( a  is the 

parameter number).  

Our study of non-equilibrium states is based on Bogolyubov's RDM [6, 8] according to 

which the statistical operator (SO) of a non-equilibrium system ( )t  at large times 0t    

depends on time and the initial state of the system 0( 0)t     only through the averages of 

a limited number of parameters 0( , )a t   

0
0( ) ( ( , ))

t
t t


        (Sp ( ) 1   ,    ˆSp ( ) a a     ) (1.1) 

They are called the reduced description parameters (RDPs) and defined by the formula 

0
0

ˆSp ( ) ( , )a at
t t


     (1.2) 

( ˆ
a  are RDP operators). Relation (1.1) is named the functional hypothesis and value 0  is 

called the synchronization time. The set of RDPs 0
ˆ{ ( , )}a t   is determined by the 

synchronization time 0  and the reduced description by these parameters is observed at 

times 0t   . The arrows in formulas (1.1) and (1.2) indicate that their right parts are the 

asymptotics of the left parts. It is convenient to write the solution of the quantum evolution 

equation using the Liouville operator L   

( ) ( )L   t t t ,      ˆ[ , ]L  
i

H ;       0( ) L  tt e  (1.3) 

where Ĥ  is the Hamilton operator. The leading statement of the RDM is that the SO 

0( ( , ))t    exactly satisfies the Liouville equation 
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0 0
ˆ( ( , )) [ ( ( , )), ]t

i
t t H         (1.4) 

for 0t   , and the parameters 0( , )a t   exactly satisfy the time equation 

0 0( , ) ( ( , ))t a at L t      ,            ˆ ˆ( ) Sp ( )[ , ]a a

i
L H      (1.5) 

for 0t   . 

In RDM applications it is important to study the influence of the initial state of the 
system on its evolution [6, 8]. To consider the Cauchy problem, the solutions of equations 

(1.4) and (1.5) can be continued to 0t  , although they describe the system evolution only 

for 0 t . Herewith, the values of the functions 0( , )a t   at 0t   are called effective 

initial conditions. 

Taking into account the expression (1.5) for the function ( )aL  , the SO ( )   satisfies 

the nonlinear differential equation 

 
( ) ˆ( ) [ ( ), ]aa

a

i
L H

 
   


 , (1.6) 

which can be solved only approximately in some perturbation theory. The case of the 

Hamiltonian 0 1
ˆ ˆ ˆH H H   with the main 0Ĥ  and small 1Ĥ  parts is particularly important in 

the paper. Formally, 0ˆ ~H  ,  1
1

ˆ ~H   where   is a small parameter.  

2.2. Peletminskii–Yatsenko model of the reduced description 

Consideration of non-equilibrium states of the system begins with the selection of RDPs 

and their operators ˆ
a . The previous development of the theory of non-equilibrium processes 

is the basis for this work. At the same time, the modern trend is to expand the set of RDPs by 
taking into account non-equilibrium correlations (fluctuations) of the studied RDPs. 

A constructive approach to the selection of RDPs was proposed by Peletminskii and 

Yatsenko using the symmetries of the basic Hamiltonian 0Ĥ . This led them (see the original 

paper [10], as well as [8]) to the PYa model, in which the RDPs operators satisfy the 
condition 

0
ˆ ˆ ˆ[ , ]a ab bb

H c   , (1.7) 

where abс  is a C-number matrix. Based on (1.7) Peletminskii and Yatsenko established the 

functional hypothesis in the basic approximation of the perturbation theory in 1Ĥ  [8] 

0

0
0 0

ˆ( ( Sp ))

i
t

t
qt

e Z e


   
c

L        (1.8) 

where 

0 0
ˆ[ , ]

i
H  L ,      0

ˆ ˆ
a ab bb

i
c   L ,     0 ( ( )) ( ( ))

i
t

t t
q qe Z Z e    

c
L

) (1.9) 
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(in terms of [8], the relation (1.8) is called ergodic, since it is connected with the ergodic 

hypothesis by the authors). The last formula (1.9) was not obtained in [8], although it 

should be fulfilled within the RDM framework and is used significantly by us further on. 

Formulas (1.7), (1.8) include the SO ( )q Y  

 ˆ( ) exp ( )q a aa
Y Y Y     ,    Sp ( ) 1q Y      (1.10) 

which is called the quasi-equilibrium SO (it is close to the equilibrium SO in certain cases). 

Functions ( )aZ   in (1.8) are determined by the condition 

ˆSp ( ( ))q a aZ     . (1.11) 

The formulas (1.9) show that these functions satisfy the condition 

( ) ( )

i i
ct ct

a b bab
Z e Z e



    (1.12) 

at arbitrary t since the equality 1 2Y Y  follows from 1 2( ) ( )q qY Y   . (1.12) results in a 

certain restriction on the matrix abc  and function ( )aZ  . It will be investigated further.  

2.3. Integral equation for the statistical operator ( )   of PYa model  

and its detailed solution 

Bogolyubov showed that the equation (1.6) for the statistical operator ( )   is invariant 

with respect to time inversion and should be supplemented with a boundary condition that 

selects the physical direction of time [6]. As such a condition, the authors of the model 

selected the functional hypothesis (1.8) for SO 0 ( )     taking here the form 

 0

0

( ) ( ( ))

i
t

t
qt

e Z e


   
c

L . (1.13) 

(1.13) is written in terms of evolution in the physical direction of time. This relation made it 

possible to obtain a nonlinear integral equation from the nonlinear differential equation (1.6) 

0

0

( ) ( ( )) f ( )

i

q Z d e e






       
c

L , (1.14) 

where denoted 

1

( )ˆf ( ) ( ), ( )aa
a

i
H M

 
      
  

 ,   1
ˆ ˆ( ) Sp ( )[ , ]a a

i
M H     . (1.15) 

In these terms the right-hand side of the time equation (1.5) for RDP 0( , )a t   with 

considering (1.7) takes the form 

( ) ( )    a ab b a

b

i
L c M . (1.16) 

To obtain integral equation (1.14), we rewrite boundary condition (1.13) in the form 

0 ( ) ( ( ))

i

qe e Z
 




   

c
L

. (1.17) 
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Formulas (1.6), (1.15), and (1.16) lead to the identity 

0 0

0

,

( )ˆ( ) [ ( ), ]
i

i

ba a

a b b e

i i
e e e H c

 

 
 

 

   
           


c

c
L L  

0 0

1

( )ˆ[ ( ), ] ( ) f ( ).
i

i

a

a a e

i
e H M e e

 

 
 

 

  
         

 


c

c
L L

 

(1.18) 

Integrating both sides of this relation over   in interval (0, ) , considering (1.17), gives the 

necessary equation (1.14). 

Equation (1.14) can be solved by an iterative procedure in perturbation theory by 1Ĥ  

because its integrand expression has the first order in this operator. For the SO ( )   we have 

( )

0

( ) ( )




     n

n

,      (0) ( ( ))    q Z , 

0

0

(1) (1)

1

( ( ))
ˆ( ) ( ( )), ( )

L



 

  

  
            

 i
c

q

q a

a a e

Zi
d e Z H M  . 

(1.19) 

The right-hand side ( )aL   of the time equation for RDP is given by the relations (1.14), 

(1.15), and formulas 

( )

1

( ) ( )




   n

a a

n

M M ,      (1)
1

ˆ ˆ( ) Sp ( ( )) ,     
 a q a

i
M Z H , 

(2) (1)

1
ˆ ˆ( ) Sp ( ) ,     

 a a

i
M H . 

(1.20) 

 Let us calculate 
(2)( )aM  using (1.8), (1.15), (1.19), and (1.20) 

0

0

(2) (1)

1 1

( ( ))
ˆ ˆˆ( ) Sp , ( ( )), ( )

i

q

a a q b

b b e

Zi i
M d H e Z H M



 

  

  
                 


c

L

0 2

1 2

( ( ))
ˆ ˆˆSp , ( ( )), ( ) ( )

i

i

i
c

q

a q t b

b b

e

eZi i
ed H Z H M



 

 



 


                   




c

c

 

0

1 12

0
1

1

1 ˆ ˆˆSp , ( ( )), ( )

ˆ ˆSp ( ( )) ,
ˆ ˆSp ( ( ))[ , ]

i

a q

i

q a

q b

b b

e

d H Z H

eZ H
d Z H




 



 

          
   


            

 
 




c

c
 

0

1 12

0 (1)

1

1 ˆ ˆˆSp , ( ( )), ( )

( ) ˆ ˆSp ( ( ))[ , ].
i

c

a q

i
i

a
q b

b b e

d H Z H

eM
ed Z H

i 


 



 

          
   


   







c
c

 

(1.21) 
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      The last term here can be simplified as  

(1)

1

( ) ˆ ˆSp ( ( ))[ , ]
i

i
i

a
q b

b b e

eM
eZ H



 


 


  




c

c
c

 

0

(1)

1

,

( ) ˆ ˆSp[ , ] ( ( ))

i

a
db b q

b d d

M
e H e Z




   




c

L  

0

(1)

1

,

( ) ˆ ˆSp ( ( )) [ , ]

i

a
db q b

b d d

M
e Z e H



 
   




c

L  

0 0

(1)

1

,

( ) ˆ ˆSp ( ( ))[ , ]

i

a
db q b

b d d

M
e Z e H e



   
   




c

L L  

(1)

1

, ,

( ) ˆ ˆSp ( ( ))[ ( ), ]

i i

a
db q be e

b d e ed

M
e Z H e

  
    


 

c c

 

(1)

1

( ) ˆ ˆSp ( ( ))[ ( ), ].a
q b

b b

M
Z H


   


  

 

 

(1.22) 

That leads finally to the following expression for the second order contribution 
(2)( )aM   to 

the right-hand side ( )aL   of the time equation (1.5) for RDPs 

0 (1)
(2)

1 12

1 ( ( ))ˆ ˆ ˆ ˆ( ) Sp ( ( )) ( ),[ , ] a
a q a bb

b

M Z
M d Z H H i



  
          

 
  (1.23) 

given without proving in [8]. 

1.4. Improved derivation of the integral equation for effective initial conditions 

of the PYa model  

Let us consider the calculation of effective initial conditions 0(0, )a  , somewhat 

simplifying the approach of [13]. From (1.7) we consistently have 

1
ˆ ˆˆ ˆ ˆ ˆSp ( ) Sp ( )[ , ] Sp ( ) Sp ( )[ , ]           t a a ab b a

b

i i i
t t H c t t H , 

1
ˆˆ ˆSp ( ) Sp ( )[ , ]

c c 

      
i i

t t

t ab b ab b

b b

i
e t e t H , 

0 1

0

ˆˆ ˆ ˆSp ( ) Sp Sp ( )[ , ]
c c  

          
i it

t

ab b a ab b

b b

i
e t d e H . 

(1.24) 

According to (1.3) and (1.4), ( ) t  and 0( ( , ))  t  satisfy the same time equation and 

therefore the following formulas are valid 

0 0
ˆ ˆSp ( ( , )) Sp ( (0, ))

c

         
i

t

ab b a

b

e t  

                                      0 1

0

ˆ ˆSp ( ( , ))[ , ]
c 

      
it

ab b

b

i
d e H , 

(1.25) 
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0 0 0 1

0

ˆ ˆ( , ) (0, ) Sp ( ( , ))[ , ]
c c  

           
i it

t

ab b a ab b

b b

i
e t d e H . 

The last formula is analogous to the last one in (1.24). Their difference has the form 

0 0 0
ˆ ˆSp ( ) Sp ( , ) (0, )

c c 

           
i i

t t

ab b a ab b a

b b

e t e t  

0 1

0

ˆ ˆSp{ ( ) ( ( , ))}[ , ]
c 

        
it

ab b

b

i
d e H . 

(1.26) 

In this relation, considering the functional hypothesis and the definition of the function 

0( , ) a t , it is possible to go to the limit t , which gives 

0 0 0 1

0

ˆˆ ˆ(0, ) Sp Sp{ ( ) ( ( , ))}[ , ].

i

a a ab b

b

i
d e H


 

              
c

 

 

 
 

(1.27) 

Taking into account formula (1.3), its analogue for 0( ( , ))    , and the identity 

ˆ ˆˆ ˆSp( ) SpL Lt te a b ae b , leads to the integral equation for 0(0, ) a  

0 0 0 0 1

0

ˆˆ ˆ(0, ) Sp Sp{ ( (0, ))} [ , ]
c

L


 
            

i

a a ab b

b

i
d e e H . (1.28) 

This integral equation was obtained in [8] by a more complicated procedure. It is solved in 

the perturbation theory in interaction 1Ĥ , which, in accordance with (1.18), gives 

0 0
ˆ(0, ) Sp     a a  

2
0 0 1

0

ˆˆ ˆSp{ ( (Sp ))}[ ( ), ] ( )



          q b

i
d Z H O      ( 0

1 1
ˆ ˆ( )

L


t
H t e H ). 

(1.29) 

This formula makes it possible to investigate the Cauchy problem in the PYa model for 

an arbitrary initial state of the system described by SO 0 . 

2. Bogolyubov RDM and its realization in kinetics of slow variables 

2.1. Kinetics of slow variables in the RDM 

Operators ˆ
a  of slow variables a  satisfy the condition ˆ ˆ[ , ]aH  ⁓ , 1    where Ĥ  

and   are the Hamiltonian of the system and a small parameter. The Liouville operator L  

for an arbitrary operator â  is defined by the expression ˆˆ ˆ[ , ]
i

a a HL . A most important 

theory of slow variables is hydrodynamics, in which 0
ˆˆ (a nk k k    ⁓ 1)   where ˆ

nk  is 

the Fourier transform of the integral equation density  ˆ ( )n x  for the considered system [12]. 

Complete kinetics of slow variables needs calculating the SO ( )   and effective initial 

conditions 0(0, )a  . According to (1.1), (1.5), and (1.6) one must solve the set of equations   
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( )
( ) ( )a

a a

L
 

   


 L ,       ˆ( ) Sp ( )a aL     L ,      ˆSp ( ) a a     . (2.1) 

The system considered is invariant with respect to time reversal. Therefore, one needs ad to 
(2.1) a boundary condition that accounts for time evolution in the physical direction of 

time. With this purpose, here the functional hypothesis is taken. According to (1.1), it is given 

by 
0

0( ) ( ( , ))
t

t t


     where 0( ) tt e  L  and 0 0( ( , )) ( (0, ))tt e      L
 for 0t   

because of (1.3) and (1.4). Therefore (1.1) leads to useful asymptotic relations 

0
0 0[ ( (0, ))] 0t

t
e


    L ,           0 0lim [ ( (0, ))] 0e


    L  (2.2) 

that can be used as the necessary boundary condition. The last formula is written with   

instead of t  to stress its mathematical sense without connection to time evolution. It is 

equivalent to the relation 

0 0 0 0

0

( (0, )) [ ( (0, ))]d e


         

L
L  (2.3) 

that can be considered as the boundary condition in the integral form. 

       The only drawback of relations (2.3) is the presence of an arbitrary SO 0  in it. In the 

theory of non-equilibrium processes, a significant role is played by the SO ( )q Y  determined 

by the formula 

ˆ( )

( )
a a

a

Y Y

q Y e
  

   ,   Sp ( ) 1q Y  . (2.4) 

It includes microscopic variables ˆ
a  of the RDPs a , some parameters aY  and the function 

( )Y  to be found from the normalization condition. This SO is often called quasi-

equilibrium, since in a few cases it is close to the equilibrium SO. An important role is played 

by the effective initial conditions (0, ( ))a q Y  , which correspond to the SO ( )q Y , and the 

inverse function ( )aY   to the function (0, ( ))a q Y   

(0, ( ( )))a q aY    , ( (0, ( )))a a q aY Y Y   . (2.5) 

The first of these formulas allows us to rewrite the boundary condition (2.3) directly in terms 

of SO ( )   

0

( ) ( ( )) [ ( ( )) ( )]q qY d e Y


         

L
L  (2.6) 

that is more suitable for further applications. 

 

2.2. Integral equations for SO ( )   and effective initial conditions 0(0, )a   

in kinetics of slow variables and their solution 

Considering the Liouville equation at the reduced description (2.1) in relation (2.6) we 

obtain 
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0

( )
( ) ( ( )) [ ( ( )) ( )]q q a

a a

Y d e Y L


  

          



L

L . (2.7) 

Equation (2.7) should be solved with taking into account the last two relations from (2.1) that 

give functions ( )aY   and ( )aL  . This formula can be considered as an integral equation for 

the SO ( )   solvable by iterations in small parameter   because  

ˆ ˆ( ) Sp ( ) Sp( ) ( )a a aL          L L ~     ( ˆ ˆˆ ˆSp( ) SpA B A B L L ); 
1

1

0

( ln Sp ln )d       L L L   => 

1
1

0

ˆ ˆ( ) ( ) ( Sp ( ) ) ( )q q a a q a qa
Y d Y Y Y Y         L L L ~  . 

(2.8) 

Let us multiply equation (2.3) by the microscopic value of RDP ˆ
a  and takeSp from the 

resulting expression. With the last formula (2.1) it gives the relation 

0 0 0 0

0

ˆ ˆ(0, )) Sp Sp [ ( (0, ))]a a ad e


           

L
L   

or equation 

0 0 0 0

0

ˆ ˆ(0, ) Sp Sp( ) [ ( (0, )) ]a a ad e


           

L
L . (2.9) 

which can be considered as an integral equation for effective initial conditions 0(0, )a   

solvable by iteration over a small parameter  . 

The solution of the integral equation of (2.7) is investigated in the form of three 

expansions in powers of   

(0) (1) 2( ) ( ) ( ) ( )O        ,         (0) (1) 2( ) ( ) ( ) ( )a a aY Y Y O       , 

(1) (2) 3( ) ( ) ( ) ( )a a aL L L O       . 
(2.10) 

From equations (2.1) and (2.7) for the quantities ( )   and ( )aY   in the main and first order 

of the perturbation theory, it is obtained 

(0) w  ,        (1) (1) (1)

0

( ( ))q a

a a

w
Y d e w L


  

       
 


L

L ; 

ˆSp a aw   ,          (1) ˆSp 0a    

(2.11) 

where the designations  

( ( ))qw Z   ,         (0)( ) ( )a aZ Y   ,        ( ) ( ( ))Z     (2.12) 

were introduced. The main contributions to the right-hand sides of the equations for RDPs 
accordingly (2.1) have the form 

(1) ˆSpa aL w  ,       (2) (1) ˆSpa aL           ( ˆ ˆ
a a   L ). (2.13) 
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Let us proceed to the calculation of the SO (1) ( )   from (2.11). The first contribution to 

it is given by 

1
(1) (1) 1

0
ˆ( ( )) ( )q a a aa

Y Y d w w          (2.14) 

taking into account for the formula 

 1ˆ ˆ ˆ ˆˆ 2

0

ˆ ˆ1 ( )A B A A Ae e d e Be O B       (2.15) 

and expressions (2.4), (2.11), and (2.12) (in (2.15) Â  and B̂  are arbitrary operators; about 

operator algebra and analysis calculations see our book [13]).  

Under the integral in (2.11) the expressions are necessary  

1 1
(1 ) (1 )

0 0

ˆ ˆ( ln Sp ln ) ( Sp )a a aa
w d w w w w w Z d w w w           L L L , 

(1) ˆ ˆ ˆSp Sp Sp( )a a a aL w w w       L L  
1

(1 )

0

ˆ ˆ ˆˆ ˆ=Sp ( Sp ) ( , )b b b a b b ab b
Z d w w w Z           

(2.16) 

where the symmetrical bilinear form 

1
1

0

ˆ ˆ ˆˆ ˆ( , ) Sp ( Sp )A B d w A wA w B     (2.17) 

is introduced. 

The multiplier
a

w


 in (2.11) at (1)

aL  using the formulas 

( )

( ) ( )q b

b
a b aY Z

Y Zw

Y  

  


  
 , 

1ˆ ˆ ˆ( ) (1 ) ( ) ( )

0
( ( ))A x A x A xe d e A x e

x x

  
 

   =>
1

1

0
( )

ˆ( )
q

a a

a Y Z

d w w
Y

 

 


    

  ; 

 ˆSp a aw    =>  ˆ ˆ( , ) b
b a acb

c

Z
   


  

(2.18) 

can be written as 

1
1 1

0
ˆ ˆ ˆ( ) ( , )b b b ab

a

w
d w w  

      


   (2.19) 

and therefore with (2.16) 

1
(1) 1 1

0
, ,

ˆˆ ˆ ˆ ˆ( ) ( , ) ( , )a b b b a c c aa
a b ca

w
L d w w Z  

       


   . (2.20) 

Now the integrand in (2.11), taking into account (2.16), takes on a compact form 

1
(1) 1

0

ˆ ˆ( Sp )a a a aa
a a

w
w L Z d w w w 
     


  L Q Q  (2.21) 

where the operator Q (see [12]) is introduced by 
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1 Q P ,         1

,

ˆ ˆ ˆ ˆ ˆ ˆ( , )( , )a a b b

a b

A A     P . (2.22) 

The final expression for the SO (1) ( )   from (2.11) and (2.14) together with (2.21) has 

the form 
1

(1) (1) 1

0
ˆ( )a a aa

Y d w w          

1
1

0 0

ˆ ˆ( Sp )a a aa
Z d d e w w w


         

L
Q Q . 

(2.23) 

The average value of the quantity A with SO (2.23) is given by the expression 

(1) (1)

0

ˆ ˆ ˆ ˆˆSp ( , ) ( , ( ))a a a aa a
A Y A Z d A



          Q         

( ˆ ˆ( ) tA t e A L ,    ˆ ˆˆ ˆSp( ) Spt te A B Ae BL L ) 

(2.24) 

where bilinear forms (2.17) are used. The condition (2.11) (1) ˆSp ( ) 0a     and formula 

(2.24) give expression for (1)
aY  

(1) 1

0

ˆ ˆ ˆ ˆ( , ( ))( , )c a a b b ca
Y Z d


        Q . (2.25) 

Substituting this expression into formula (2.23), we obtain 

(1)

0

ˆ ˆ ˆSp ( , ( ))a aa
A Z d A



      Q Q . (2.26) 

From (2.13), (2.16) and taking into account formula (2.26), we sequentially obtain 

contributions of the first and second order in the small parameter of the theory   to the time 

equation for the RDP kinetics of slow variables 

(1) ˆ ˆ ˆSp ( , )a a b b ab
L w Z     ,        

(2) (1)

0

ˆ ˆ ˆSp ( , ( ))a a b b ab
L Z d



         Q Q . 

(2.27) 

The effective initial conditions 0(0, )a   for time equations (1.28) can be found from 

the integral equation (2.9) by perturbation theory in   that gives 

(0) (1) 2
0(0, ) ( )a a a O       ,     (0)

0a a         ( 0 0
ˆSpa a    ); 

(1)
0 0

0

ˆSp[ ( )] ( )a ad w



         

 

(2.28) 

because according to (2.11) and (2.12) 
(0)( ) ( ( )) ( )q Z w      . Further, formula 

0 0
ˆSp( ( )) 0aw      with definition (2.22) of operator P  gives the identity 

0 0
ˆSp( ( )) 0w A   P and allows us to rewrite (1)

a  in the form 

(1)
0 0

0

ˆSp[ ( )] ( )a ad w



        Q . (2.29) 

Thus, the effective initial conditions 0(0, )a  are calculated coherently. 
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3. Conclusions 

The work is based on the Bogolyubov’s method of reduced description of non-
equilibrium states. Its basic ideas are carefully discussed with remarks that supplement the 

existing literature. The initial idea of the method is a functional hypothesis that briefly (by 

relatively small amount of parameters) describes the system at large times 0t    ( 0  is a 

characteristic time). Attention is drawn to the need of taking into account the physical 

direction of evolution in time by using a boundary condition that violates the invariance  

relative to time. A useful idea is to formulate it as the functional hypothesis in a simple case 
of a quasi-equilibrium distribution. The fruitfulness of the idea of extending the values of 

reduced description parameters to non-physical times and introducing effective initial 

conditions is noted in the paper. 

The paper investigates the implementation of the reduced description method in the 
Peletminskii–Yatsenko model and in the slow variables model. In these models, there is a 

small parameter, on the basis of which the perturbation theory is built for calculating the 

quantities introduced at the reduced description of the system (statistical operator, effective 
initial conditions). For them, the corresponding integral equations are obtained, which are 

solved by iterations. 

In the Peletminskii–Yatsenko model, the contribution view of the second order of 

smallness to the time equations for the RDPs is proved rigorously, and a simple derivation of 
the integral equation for the effective initial conditions is proposed. In our study, the 

parameters of slow variables are not specified, which leads to significant complication in the 

implementation of the reduced description. In this case, we propose reasonable techniques for 
solving the problem referring to our book on additional questions of quantum mechanics 

including the innovative consideration of the kinetics of slow variables. 
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