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In quark­gluon plasma (QGP), at high temperatures T the spontaneous generation of color magnetic
fields, b3(T ), b8(T ) ̸= 0 (3, 8 are color indexes), and usualmagnetic field b(T ) ̸= 0 happens. Also, the Polyakov
loop and related to it theA0(T ) condensate, which is solution to Yang­Mills imaginary time equations, create.

Recently, with the new type two­loop effective potential, which generalizes the known integral represen­
tation for the Bernoulli polynomials and takes into consideration the magnetic background, these effects were
derived. The corresponding effective potentialW (T, b3, b8, b, A0) was calculated either in SU(2) gluodynam­
ics or full quantum chromodynamics (QCD). The values of magnetic field strengths at different temperatures
were calculated and the mechanism for stabilizing the background due to A0(T ) was also discovered.

In present paper, we concentrate on the one­loop quark contributions. In particular, we derive the
effective vertexes, which couple magnetic fields and A0. The vertexes result in new specific effects signalling
the creation of QGP in heavy ion collision experiments.
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1. Introduction
Deconfinement phase transition (DPT), as well as the properties of QGP, are widely in­

vestigated for many years. Most results have been obtained in the lattice simulations because
of the large coupling value g ≥ 1 at the lower the phase transition temperature Td. But at high
temperatures due to asymptotic freedom the analytic methods are also reliable. They give a
possibility for investigating various phenomena in the plasma. Among them is the creation of
gauge field condensates described by the classical solutions to field equations without sources.
Only such type fields could appear spontaneously inside the QGP. The well known ones are the
so­called A0 condensate, which is algebraically related to the Polyakov loop (PL) and the chro­
momagnetic fields b3 = gH3, b8 = gH8 (3, 8 are color indexes of SU(3) group) which are the
Savvidy vacuum states at high temperature. These condensates result in numerous proper new
effects which could be the signals of the QGP. The condensation of A0 alone is investigated by
different methods. For recent works see, for instance, [1] and references therein.

All the mentioned condensates are the consequences of asymptotic freedom and follow
from the important property that asymptotic freedom at high temperature inevitably results in
an infrared instability at low one. The field condensation prevents such type instability that re­
sults in the formation of the physical vacuum state. In quantum field theory (QFT), the magnetic
and the A0 condensates are generated at different orders in coupling constant (or the number of
loops) for the effective potential (EP)W (T, b, b3, b8, A0). So that they have different tempera­
ture dependencies and play different roles in the QGP dynamics. For example, A0 is generated
at g4 order in coupling constant and determined by the ratio of two­ and one­loop contributions
to W (A0). The fields b(T ), b3(T ), b8(T ) are generated in tree ­ plus one­loop ­ plus daisy ap­
proximation and also have the order g2 in coupling constant. On the other hand, the contribution
of A0 at tree level equals zero because it is a constant electrostatic potential.

The fields investigated below are an important topic towards a theory of confinement. The
A0­background is relevant because at finite temperature such field cannot be gauged away and
is intensively investigated beginning with [2]. In the early 90­ies, two­loop contributions were
calculated in QCD and with these, the EP has non­trivial minimums and related condensate
fields (see, for instance, [3], [4]). They form a hexagonal structure in the plane of the color
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components A3
0 and A8

0 of the background field.
A common generation of both fields was studied analytically in [15]. Here, new representa­

tion generalizing the known integral representation for the Bernoulli polynomials, was worked
out, which admits introducing either A0 or any b fields up to two­loop order. The magnetic
fields considerably change the spectra of quarks and gluons as well. So, new phenomena have
to be realized. The PL as well as A0(T ) are the order parameters for the deconfinement phase
transition. At low temperature they equal zero. At high temperature they become nonzero. The
same concerns the spontaneously created magnetic fields.

The SU(3) gauge group can be presented as three SU(2) groups. So, the most results are
relevant. In SU(2), the EP in the background Rξ gauge reads [15]:

W
SU(2)
gl = B4(0, 0) + 2B4 (a, b) (1)

+ 2g2
[
B2 (a, b)

2 + 2B2 (0, b)B2 (a, b)
]
− 4g2(1− ξ)B3 (a, b)B1 (a, b)

with the notation

a =
x

2
=

gA0

2πT
, b = gH3

3 . (2)

The chromomagnetic field is directed along third directions in coordinate and color spaces. Since
we work at finite temperature,Wgl is equivalent to the free energy.

The functions Bn(a, b) are defined by

B4(a, b) = T
∑
ℓ

∫
dk3
2π

b

4π2

∑
n,σ

ln
(
(2πT (ℓ+ a))2 + k23 + b(2n+ 1 + σ − i0)

)
, (3)

B3(a, b) = T
∑
ℓ

∫
dk3
2π

b

4π2

∑
n,σ

ℓ+ a

(2πT (ℓ+ a))2 + k23 + b(2n+ 1 + σ − i0)

B2(a, b) = T
∑
ℓ

∫
dk3
2π

b

4π2

∑
n,σ

1

(2πT (ℓ+ a))2 + k23 + b(2n+ 1 + σ − i0)
,

B1(a, b) = T
∑
ℓ

∫
dk3
2π

b

4π2

∑
n,σ

ℓ+ a(
(2πT (ℓ+ a))2 + k23 + b(2n+ 1 + σ − i0)

)2 .

In eq.(1), ξ is gauge fixing parameter, the summations run n = 0, 1, . . . , σ = ±2 and ℓ runs
over all integers. The ′ − i0′­prescription defines the sign of the imaginary part for the tachyon
mode. These formulas and eq.(1) are the generalization of corresponding two­loop expressions
in [21], [23], [24] and also [4] for including a magnetic field. We note the relations

B3(a, b) =
1

4πT
∂aB4(a, b), B1(a, b) =

−1

4πT
∂aB2(a, b) (4)

proper to the Bernoulli polynomials.
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For b = 0 we have to replace b
4π2

∑
n,σ →

∫
d2k
(2π)2

and get

B4(a, 0) =
2π2T 4

3
B4(a), B3(a, 0) =

2πT 3

3
B3(a), (5)

B2(a, 0) =
T 2

2
B2(a), B1(a, 0) = − T

4πB1(a)
,

where Bn(a) are the Bernoulli polynomials, periodically continued. The special values for
a = 0 are

B4(0, 0) = −π2T 4

45
, B3(0, 0) = 0, B2(0, 0) =

T 2

12
, B1(0, 0) =

T

8π
. (6)

These formulas hold for T > 0.
Note also that the functionB4(a, b) describes the one loop contribution and the others give

the two loop part of the EP. The motivation for the above choice of notations is that the functions
Bn(a, b), (3) are the corresponding mode sums without additional factors. More details about
this representation as well as the renormalization and the case of T = 0 are given in [15].
Above expressions with whole l = ±1,±2, ... correspond to boson contributions. For fermions
l = ±(1 + 1/2),±(2 + 1/2), ....

2. One loop approximation for EP
Asmentioned in the previous section, the spontaneous creation ofA0 field in theMatsubara

imaginary time formalism happens in two­loop approximation presented in eq.(1). In one­loop
order, only magnetic fields are generated. The latter part at finite temperature is described by
the expression B4(a, b) which will be the main object below. In case of a number of fields it
produces numerous specific interactions between them (due to vacuum fluctuations).

To explain the origin of this object we start with b = 0 case (see, for example, [3] which
is used in what follows). In Appendixes A1, A2 of it the Feynman rules and the integral rep­
resentations for the Bernoulli polynomials are placed. For us, the QCD condensates generated
by fermion loops are needed: c1 = g(A3

0 + A8
0/
√
3)/2, c2 = g(−A3

0 + A8
0/
√
3)/2, c3 =

g(−A8
0/
√
3). Here, 3 and 8 are internal SU(3) group color indexes.

The basic integral representation for B4(
Cβ
2π ), β = 1/T reads (we changed notation ki →

pi to be in correspondence with [3]),

∫
dp ln p2c =

2π2

3β4
B4(

Cβ

2π
). (7)

Here,
∫
dp = 1

β

∑
p0

∫ d3p
(2π)3

, and p2c = (p0 + c)2 + p⃗2. Summation over p0 runs from minus to

plus infinity with the values p0 = 2πl
β for bosons, p0 = 2π(l+1/2)

β for fermions and the value of
c = ci.

To obtain formulas of eq.(3) we have to make the substitutions in the integral representation
for B4(ci, p⃗):

∫
dp →

∫ dp3
(2π)

gH
(2π)2

∑
(n,σ), where n = 0, 1, 2, ... is a Landau level number and

σ = ±1 is spin number. This is in accordance with energy spectrum of charged spin 1/2 particle
in constant magnetic field: ϵ2p = p23 + gH((2n + 1) − σ) +m2. p3 is momentum along field
direction H3 = const. Here the kind of magnetic field is insufficient. We assume that all the
generated magnetic fields are directed along third axis in coordinate space. As it is occurred, for

5



V. Skalozub

parallel fields the minimum of the effective potential is lower. In the ground state n = 0, σ = 1,
and the particle energy is ϵ2p = p23+m2. This is so called Low landau level (LLL) approximation.
In strong fields it significantly simplifies calculations and gives very good results. Therefore, it
will be used in what follows.

Our next steps are the following. First, we calculate the derivative with respect to ϵ2p of
the B4(ci, ϵ

2
p). Second, we sum up the series over p0. Then we integrate over ϵ2p and obtain the

potential of the effective produced interactions between magnetic and A0 fields. This nontriv­
ial procedure results in the new type effective vertexes for high temperature QGP. Finally, we
summarize our results and discuss prospects for future researches.

3. Calculation series over p0
Now, we calculate the temperature sum over p0 proceeding in two steps. First we calculate

derivative of the B4(ci, ϵ
2
p) eq.(3) with respect to ϵ2p which in a magnetic field background is

realized by substituting p⃗2 → ϵ2p. Remind that ϵ2p = p23 + gH((2n + 1) − σ) and in LLL
approximation n = 0, σ = 1, ϵ2p = p23 + m2

q = ϵ2pL,mq is quark mass. Below we write the
parameter ϵ2p for all cases, where it is clear.

We write for the left hand side of B4(ci, ϵ
2
p) = I0 and obtain

I1 =
dI0
dϵ2p

=
1

β

∑
p0

∫
dp3
(2π)

gH

(2π)2

∑
(n,σ)

1

(p0 + C)2 + ϵ2p
. (8)

Here, C stands for one of ci written above and p0 corresponds to fermions. To calculate series
over p0 we use the standard integral representation for fermions

1

β

∑
p0

f(p0) = −1

2

∑
j

Res[f(ω) tan(
βω

2
)], (9)

where summation is over poles ωj .
In our case, the poles are, ω1 = −C + iϵp, ω2 = −C − iϵp. By using these values we

obtain the result

I2 =
1

2ϵp
(

sinh(ϵpβ)
cos(Cβ) + cosh(ϵpβ)

− 1). (10)

In this expression we have subtracted 1 to separate a zero temperature contribution. In fact, in
this expression ϵp = (p23+m2)1/2 because we turn to the LLL approximation and not calculated
complete series over n, σ.

4. Conclusions
As final step, we integrate over ϵ2p as a parameter. The result is

I2F = −ϵp +
1

β
ln[cosh(ϵpβ) + cos(Cβ)]. (11)

This expression has to be inserted in the integral over dp3 eq. (8). We obtain,

VH,A0 =
gH

(2π)2

∫
dp3
(2π)

(−ϵp +
1

β
ln[cosh(ϵpβ) + cos(Cβ)]), (12)

6



Effective vertexes in magnetized quark-gluon plasma

where C = ci written in the second section. It describes effective interactions of different kind
magnetic fields H3,H8 and usual magnetic field H with A0 condensates in high temperature
QGP .

Derived potential generates new type effective vertexes and produces new effects in heavy
ion collisions. Investigation of them will be reported in other place.
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