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This paper presents a neural network approach for reconstructing dielectric permittivity in the 38 –  

52 GHz band. By employing logarithmically compressed time-domain features of the inverse reflection 

coefficient, the developed convolutional neural network (CNN) model achieves a relative error of 2 – 3 %. 

The method enables accurate, non-iterative material characterization suitable for rapid analysis. 
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1. Introduction 

Experimental determination of the electrodynamic parameters of materials, in particular 
the dielectric permittivity ε, is a fundamental task in contemporary materials science and 

applied electromagnetics. To retrieve them, various radio-frequency measurement techniques 

providing indirect measurements are employed. These techniques require the development of 

an appropriate mathematical model that links the sought material parameters to directly 
measured quantities. The resulting relationship is typically nonlinear, so that small 

perturbations in the experimental data may lead to significant deviations in the reconstructed 

parameters, rendering the inverse problem inherently unstable and highly sensitive to 
measurement noise, and thereby necessitating the use of dedicated regularization and robust 

optimization strategies. 

Time-domain approaches based on the separate observation of reflection peaks from the 

interfaces of a dielectric slab offer a relatively straightforward way to estimate its parameters 
[1]. For thin plates, however, this strategy becomes ineffective. In [2], the inverse problem is 

reformulated as an optimal control problem for the Cauchy problem associated with a 

Riccati-type equation, where the dielectric permittivity profile is treated as the control 
function; this approach has been successfully validated using experimental data for dielectric 

layers placed inside a standard rectangular metal waveguide [3]. Another methodology [4] 

employs the Gelfand–Levitan and Newton–Kantorovich methods; its practical 
implementation, however, requires extrapolation of the frequency response towards zero 

frequency using a quasi-duration functional, which substantially complicates the numerical 

procedure. The quasi-solution method [5] represents a further powerful tool and yields a 

satisfactory agreement with experimental measurements. Nevertheless, the surveyed results 
indicate that, even in comparatively simple one-dimensional configurations, the reliable 

reconstruction of dielectric properties remains algorithmically and computationally 

demanding. 
Motivated by these limitations, recent research has increasingly focused on deep 

learning techniques, which demonstrate strong potential for addressing nonlinear inverse 

problems and reconstructing material parameters from indirect measurements. The objective 
of this study is to enhance the accuracy and robustness of dielectric parameter estimation 

based on the frequency dependence of the reflection coefficient. In this study, a neural-

network-based framework is developed that employs a specially constructed inverted 

representation of the reflection coefficient, aimed at increasing sensitivity to variations in the 
material parameters and improving the resolution of the reconstruction under noisy 

measurement conditions. 
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2. Analytical model 

To address the formulated problem, we employ a well-known analytical expression 

describing the frequency dependence of the reflection coefficient of a single-layer dielectric 

structure in free space [6]: 

𝑅(ω) =
𝑅−𝑅𝑒
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                                                (1) 

where 𝑅 is the Fresnel reflection coefficient at the “air–layer material” interface, 𝜔 is the 

frequency of the probing electromagnetic signal, с is the speed of light in vacuum, and 𝑑 is 

the layer thickness. 

The transformation of the reflection coefficient 𝑅(ω) (1) from the frequency-domain to 

the time domain 𝑟(𝑡) leads to representing the signal as a sum of weighted exponentials 
whose exponents are determined by the poles of this coefficient. In the case of using the 

inverted frequency response, the roles of the poles are instead played by the zeros of (1). 

On the basis of (1), the corresponding expressions for the poles ω𝑝,𝑛 and ω𝑧,𝑛 zeros 

take the form: 
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where φ denotes the phase of the Fresnel reflection coefficient and 𝑛  is an integer index. 

For low-contrast materials, the reflection coefficient has poles with large imaginary 
parts located far from the real axis, so the corresponding time-domain response decays 

rapidly. This is illustrated in Fig. 1, which shows signals synthesized over 38 – 52 GHz with 

a 100 MHz step for layers with ε = 1.14, d = 1 mm (Fig. 1a) and ε = 2.10, d = 1 cm (Fig. 1b). 

In both cases, only a short pulse is observed.  

 

 a 

 

 b 

 

Fig. 1. Time-domain representation of the reflection coefficient 𝒓𝒏 synthesized over the 38 – 52 GHz band:  

(a) low-contrast material with permittivity 𝛆 = 𝟏. 𝟏𝟒 and 𝒅 = 𝟏 𝐦𝐦, 
(b) higher-contrast material with 𝛆 = 𝟐. 𝟏𝟎 and 𝒅 = 𝟏 𝐜𝐦. 

Due to the discrete frequency grid and the use of a discrete Fourier transform, the time-

domain signal  𝑟𝑛 is represented as a function of the sample index n. and, due to the finite 

discrete frequency grid, has a short duration, which limits subsequent processing. In contrast, 
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when the signal is synthesized from the inverted frequency response, the poles (zeros of the 

reflection coefficient) lie on the real axis, so the time-domain signal is, in principle, of infinite 

duration.  This is illustrated in Fig. 2 for ε = 1.14 (Fig. 2a) and ε = 2.10 (Fig. 2b) where 

the signals are significantly prolonged, enabling more accurate parameter estimation. 

The inversion of the reflection coefficient in Fig. 2 has several drawbacks: the 
reciprocals of the coefficient may approach infinity, and measurement noise becomes 

dominant in the spectrum. To prevent divergence, additional losses should be introduced to 

enforce a prescribed decay of the time-domain signal, together with dynamic-range 
compression. In neural-network-based approaches these operations can be incorporated at the 

stage of generating training signals and therefore do not hinder the procedure, unlike methods 

that rely on numerical estimation of the zeros.  

 

a 

 

b  
 

Fig. 2. Time-domain signal synthesized from the inverted frequency response 𝟏/𝑹𝒏:  

(a) low-contrast material with permittivity 𝛆 = 𝟏. 𝟏𝟒 and 𝒅 = 𝟏 𝐦𝐦, 
(b) higher-contrast material with 𝛆 = 𝟐. 𝟏𝟎 and 𝒅 = 𝟏 𝐜𝐦. 

3. Neural network model for solving the inverse problem 

To solve the regression problem of reconstructing the dielectric permittivity (ε) from the 

time-domain response of the material, a model based on a deep CNN was developed. As 

input features, we used data obtained from the inverse fast Fourier transform (IFFT) of the 

function 1 𝑅𝑛⁄ . 
The input dataset was constructed from the real and imaginary parts of the signal. The 

dimensionality of the input space for a single sample was [𝑁𝑡 × 2] where 𝑁𝑡  is the number 

of time samples, and 2 corresponds to the ℜ and ℑ  channels. 

To address the high dynamic range of IFFT signals, where primary reflections dominate, 

a sign-preserving logarithmic compression [7] was applied. This transformation enhances 
weak features and mitigates gradient saturation. To further stabilize training, outliers were 

clipped at the 99th percentile, followed by Z-normalization of both input features and target 

labels to zero mean and unit variance. 
The proposed architecture is a specialized one-dimensional convolutional neural 

network for deep analysis of two-channel time series. It comprises three convolutional blocks 

that successively increase the abstraction level of extracted features. The first block performs 

early fusion of the real and imaginary signal components, forming a shared feature vector, 
while the remaining two blocks model temporal dependencies in this compressed space.  
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Network weights were optimized using the Adam algorithm with mean squared error 

(MSE) as the loss function. Training was conducted for 150 epochs with mini batches of 32 
samples and random shuffling of the training set. Model performance on the independent test 

set was evaluated using MSE and the Pearson correlation coefficient, computed after 

denormalization of the network outputs to assess the accuracy of reconstructing ε 
During testing, the model achieved high accuracy in reconstructing the dielectric 

permittivity: the Pearson correlation coefficient was, 𝑅P ≈ 0.992, and the mean absolute 

error (MAE) was 0.032. In the considered range ε′ ∈ [1.1, 2.1] and   𝑑 = 1 mm, this 
corresponds to a relative error of about 2 – 3%, which is comparable to the instrumental 

accuracy of standard free-space measurement techniques. This indicates a nearly linear 

response without noticeable bias and supports the effectiveness of logarithmic compression 
for signals with a wide dynamic range.  

4. Conclusions 

This study proposes and validates a neural-network–based method for reconstructing the 

dielectric permittivity of materials in the millimeter-wave range (38 – 52 GHz). The 

developed CNN model demonstrates high prediction accuracy 𝑅𝑃 ≈ 0.992, 𝑀𝐴𝐸 ≈ 0.032. 
These results confirm the effectiveness of deep learning for rapid material characterization, 

providing measurement accuracy comparable to instrumental methods while avoiding 

computationally expensive iterative algorithms. 
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