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ROBUST REAL-TIME DETERMINATION OF DIELECTRIC PERMITTIVITY
FROM REFLECTION DATA USING A NEURAL NETWORK
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This paper presents a neural network approach for reconstructing dielectric permittivity in the 38 —
52 GHz band. By employing logarithmically compressed time-domain features of the inverse reflection
coefficient, the developed convolutional neural network (CNN) model achieves a relative error of 2 — 3 %.
The method enables accurate, non-iterative material characterization suitable for rapid analysis.
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1. Introduction

Experimental determination of the electrodynamic parameters of materials, in particular
the dielectric permittivity €, is a fundamental task in contemporary materials science and
applied electromagnetics. To retrieve them, various radio-frequency measurement techniques
providing indirect measurements are employed. These techniques require the development of
an appropriate mathematical model that links the sought material parameters to directly
measured quantities. The resulting relationship is typically nonlinear, so that small
perturbations in the experimental data may lead to significant deviations in the reconstructed
parameters, rendering the inverse problem inherently unstable and highly sensitive to
measurement noise, and thereby necessitating the use of dedicated regularization and robust
optimization strategies.

Time-domain approaches based on the separate observation of reflection peaks from the
interfaces of a dielectric slab offer a relatively straightforward way to estimate its parameters
[1]. For thin plates, however, this strategy becomes ineffective. In [2], the inverse problem is
reformulated as an optimal control problem for the Cauchy problem associated with a
Riccati-type equation, where the dielectric permittivity profile is treated as the control
function; this approach has been successfully validated using experimental data for dielectric
layers placed inside a standard rectangular metal waveguide [3]. Another methodology [4]
employs the Gelfand-Levitan and Newton—Kantorovich methods; its practical
implementation, however, requires extrapolation of the frequency response towards zero
frequency using a quasi-duration functional, which substantially complicates the numerical
procedure. The quasi-solution method [5] represents a further powerful tool and yields a
satisfactory agreement with experimental measurements. Nevertheless, the surveyed results
indicate that, even in comparatively simple one-dimensional configurations, the reliable
reconstruction of dielectric properties remains algorithmically and computationally
demanding.

Motivated by these limitations, recent research has increasingly focused on deep
learning techniques, which demonstrate strong potential for addressing nonlinear inverse
problems and reconstructing material parameters from indirect measurements. The objective
of this study is to enhance the accuracy and robustness of dielectric parameter estimation
based on the frequency dependence of the reflection coefficient. In this study, a neural-
network-based framework is developed that employs a specially constructed inverted
representation of the reflection coefficient, aimed at increasing sensitivity to variations in the
material parameters and improving the resolution of the reconstruction under noisy
measurement conditions.
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2. Analytical model

To address the formulated problem, we employ a well-known analytical expression
describing the frequency dependence of the reflection coefficient of a single-layer dielectric
structure in free space [6]:
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where R is the Fresnel reflection coefficient at the “air—layer material” interface, w is the
frequency of the probing electromagnetic signal, c is the speed of light in vacuum, and d is
the layer thickness.

The transformation of the reflection coefficient R(w) (1) from the frequency-domain to
the time domain r(t) leads to representing the signal as a sum of weighted exponentials
whose exponents are determined by the poles of this coefficient. In the case of using the
inverted frequency response, the roles of the poles are instead played by the zeros of (1).

On the basis of (1), the corresponding expressions for the poles w,, and w,, zeros
take the form:
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where ¢ denotes the phase of the Fresnel reflection coefficient and n is an integer index.

For low-contrast materials, the reflection coefficient has poles with large imaginary
parts located far from the real axis, so the corresponding time-domain response decays
rapidly. This is illustrated in Fig. 1, which shows signals synthesized over 38 — 52 GHz with
a 100 MHz step for layers with ¢ = 1.14, d = 1 mm (Fig. 1a) and £ = 2.10, d = 1 cm (Fig. 1b).
In both cases, only a short pulse is observed.
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Fig. 1. Time-domain representation of the reflection coefficient r,, synthesized over the 38 — 52 GHz band:
(a) low-contrast material with permittivity e = 1.14and d = 1 mm,
(b) higher-contrast material withe = 2.10and d = 1 cm.
Due to the discrete frequency grid and the use of a discrete Fourier transform, the time-
domain signal 7, is represented as a function of the sample index n. and, due to the finite
discrete frequency grid, has a short duration, which limits subsequent processing. In contrast,
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when the signal is synthesized from the inverted frequency response, the poles (zeros of the
reflection coefficient) lie on the real axis, so the time-domain signal is, in principle, of infinite
duration. This is illustrated in Fig. 2 for e = 1.14 (Fig. 2a) and € = 2.10 (Fig. 2b) where
the signals are significantly prolonged, enabling more accurate parameter estimation.

The inversion of the reflection coefficient in Fig. 2 has several drawbacks: the
reciprocals of the coefficient may approach infinity, and measurement noise becomes
dominant in the spectrum. To prevent divergence, additional losses should be introduced to
enforce a prescribed decay of the time-domain signal, together with dynamic-range
compression. In neural-network-based approaches these operations can be incorporated at the
stage of generating training signals and therefore do not hinder the procedure, unlike methods
that rely on numerical estimation of the zeros.
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Fig. 2. Time-domain signal synthesized from the inverted frequency response 1/R,,:
(a) low-contrast material with permittivity e = 1.14 and d = 1 mm,
(b) higher-contrast material withe = 2.10 andd = 1 cm.

3. Neural network model for solving the inverse problem

To solve the regression problem of reconstructing the dielectric permittivity (€) from the
time-domain response of the material, a model based on a deep CNN was developed. As
input features, we used data obtained from the inverse fast Fourier transform (IFFT) of the
function 1/R,,.

The input dataset was constructed from the real and imaginary parts of the signal. The
dimensionality of the input space for a single sample was [N, X 2] where N, is the number
of time samples, and 2 corresponds to the R and 3 channels.

To address the high dynamic range of IFFT signals, where primary reflections dominate,
a sign-preserving logarithmic compression [7] was applied. This transformation enhances
weak features and mitigates gradient saturation. To further stabilize training, outliers were
clipped at the 99th percentile, followed by Z-normalization of both input features and target
labels to zero mean and unit variance.

The proposed architecture is a specialized one-dimensional convolutional neural
network for deep analysis of two-channel time series. It comprises three convolutional blocks
that successively increase the abstraction level of extracted features. The first block performs
early fusion of the real and imaginary signal components, forming a shared feature vector,
while the remaining two blocks model temporal dependencies in this compressed space.
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Network weights were optimized using the Adam algorithm with mean squared error
(MSE) as the loss function. Training was conducted for 150 epochs with mini batches of 32
samples and random shuffling of the training set. Model performance on the independent test
set was evaluated using MSE and the Pearson correlation coefficient, computed after
denormalization of the network outputs to assess the accuracy of reconstructing €

During testing, the model achieved high accuracy in reconstructing the dielectric
permittivity: the Pearson correlation coefficient was, Rp = 0.992, and the mean absolute
error (MAE) was 0.032. In the considered range € €[1.1,2.1] and d =1 mm, this
corresponds to a relative error of about 2 — 3%, which is comparable to the instrumental
accuracy of standard free-space measurement techniques. This indicates a nearly linear
response without noticeable bias and supports the effectiveness of logarithmic compression
for signals with a wide dynamic range.

4. Conclusions

This study proposes and validates a neural-network—based method for reconstructing the
dielectric permittivity of materials in the millimeter-wave range (38 — 52 GHz). The
developed CNN model demonstrates high prediction accuracy Rp = 0.992, MAE =~ 0.032.
These results confirm the effectiveness of deep learning for rapid material characterization,
providing measurement accuracy comparable to instrumental methods while avoiding
computationally expensive iterative algorithms.
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