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We consider a slightly non-uniform one-component gas with weak potential interaction. The basis of 

the investigation is the known kinetic equation in the case of small interaction which is truncated up to the 

second order of smallness. This equation contains a nonlocal collision integral of the second order in small 

interaction. In this paper we consider the hydrodynamic stage of the system evolution, and, in contrast to 

the standard hydrodynamics, we take into account the non-locality of the collision integral. We propose the 

following set of the reduced description parameters which are the densities of the conserved quantities: the 

particle number density, the momentum density, and the total energy density. It should be stressed that in 

contrast to the standard hydrodynamics, the kinetic energy is not conserved, and only the total system 

energy is conserved if the nonlocal collision integral is used. Definitions of the system velocity and 

temperature are proposed; it should be stressed that the proposed temperature definition is based on the 

total system energy rather than on the kinetic one. The hydrodynamics in the leading order in small 

gradients is investigated, and it is shown that the system one-particle distribution function in the leading-in-

gradients order coincides with the Maxwellian one. Particle number density, velocity and temperature time 

evolution equations (hydrodynamic equations) are derived in the non-dissipative case. The leading-in-

interaction orders of the obtained equations coincide with the corresponding equations in the framework of 

the standard hydrodynamics. The corrections of the first and second order in small interaction are also 

obtained. 
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equations, temperature and velocity definitions. 

Received 25.09.2018; Received in revised form 14.10.2018; Accepted 18.11.2018 

1. Introduction 

The system under consideration is a one-component slightly non-uniform gas with weak 

potential interaction. The investigation is based on the basis of the known kinetic equation in 

the case of small interaction [1] which is truncated up to the second order in small interaction. 

It is important to stress that this equation contains a general non-local second-order collision 

integral and in the local approximation for the collision integral it coincides with the Landau–

Vlasov kinetic equation. 

The aim of the paper is to describe the hydrodynamic stage of the system evolution. The 
construction of system hydrodynamics on the basis of the Champan–Enskog method is well-

known for systems which are described by the Boltzmann kinetic equation with a local 

collision integral (see the description in [2] and an example of application in [3]). However, a 
description of the system on the basis of a nonlocal collision integral is more precise. In fact, 

in the case of small density the non-local collision integral is described in [2]. In [2] the 

combined Chapman–Enskog–Grad method is proposed for deriving the kinetic coefficients 
with taking into account the non-locality of the collision integral. But it should be stressed 

that in [2] the case of small density rather than the case of small interaction is considered. It 

should also be noticed that usually the hydrodynamics of systems with weak interaction is 

built on the basis of the Landau kinetic equation with a local collision integral which does not 

contain the Vlasov term. In such a case, the system hydrodynamics is constructed similarly to 

the one based on the Boltzmann equation (see, for example, [4]). 

In this  paper the case of  small interaction is considered, the non-locality of the collision 

integral and the self-consistent Vlasov term are taken into account.
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In our previous paper [5] it is shown that the conserved quantities for the system 

under consideration are the particle number, momentum and total system energy. It is 

also shown that although the kinetic energy is conserved on the basis of the local collision 

integral, it is not conserved on the basis of the nonlocal collision integral. As is known, 
the system reduced description parameters should be chosen as the densities of the 

conserved quantities, so the following set of the reduced description parameters is 

proposed in this paper: the particle number density, the momentum density and the total 
energy density. Usually the temperature and velocity are used as the reduced description 

parameters instead of momentum and energy density. The corresponding velocity and 

temperature definitions are proposed in this paper, and it should be stressed that the 

temperature is defined here on the basis of the total system energy rather than of the 

kinetic one.  

The system hydrodynamics is investigated on the basis of the proposed definitions 

of the reduced description parameters. The kinetic equation is solved in the leading-in-

gradients order and corresponding hydrodynamic equations are derived. In fact, the non-

dissipative system hydrodynamics is investigated in this paper. Such an investigation is 

the basis of our future research devoted to the dissipative hydrodynamics of the system 
under consideration. 

The paper is organized as follows. In Sec. 2 the basic equations of the theory are 

given, in Sec. 3 the non-dissipative system hydrodynamics is investigated and in Sec. 4 

conclusions are made. 

2. Basic equations of the theory 

The basis of investigation is the kinetic equation in the case of small potential 

interaction which is truncated up to the second order in small interaction [1]: 
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where (| |)V x  is the pair system potential, m  is the mass of a particle, ( , )f t  is the one-

particle distribution function, and 
1( , )I f  is the general nonlocal second-order collision 

integral. In the local approximation 
1( , )I f  coincides with the known Landau collision 

integral. 

The particle number, momentum, kinetic energy and potential energy densities are 

given by standard definitions in terms of the one-particle distribution function: 

( , ) ( , )n t d f t x p , ( , ) ( , )n nt d p f t  x p , 2

kin ( , ) ( 2 ) ( , )t d p m f t  x p , 

pot 1 2 2 1 2 12( , ) ( , , ( )) 2t d f f t V    x , 
(2) 

here the result [1] for the two-particle distribution function should be taken into account: 



Non – dissipative hydrodynamic equation based on a nonlocal collision integral 

 13

2 1 2 1 2( , , ) ( ) ( )f f f f     

 0
2

12 1 2

1 1 2 2

( ) ( )l

l l l l

d F f f O
p m x p m x



      
         

    
 , (3) 

the small parameter   describes the smallness of the potential interaction.  

The system is assumed to be weakly non-uniform on the scale of the radius of 

particle interaction, so we can expand 
2( )f   into a series in 

2 1x x : 
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(4) 

the small parameter g  describes the smallness of the gradients of a one-particle 

distribution function. It should be stressed that the same idea was used in [2] in the 
derivation of the non-local collision integral in the case of small density.  

On the basis of (1)–(4) it is shown in [5] that the conserved quantities of the system 

under consideration are the particle number, momentum and total energy of the system, 
the total energy is the sum of the kinetic and potential energies of the system. It is shown 

in [5] that, in contrast to the theory based on the local collision integral, the kinetic energy 

of the system is not conserved. The following time evolution equations for the densities 

of the conserved quantities are obtained in [5]: 
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(5) 

the expressions for the momentum and total energy fluxes obtained in [5] with the help of 

the following expressions  
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where ( ) (| |)V k V k  is the Fourier transform of the pair system potential (| |)V x : 

     1 23 3

1 2| | (2 )
ik x x

V d ke V k
   x x

� � �

. (8) 

The results given in this section are the basis for the construction of system 

hydrodynamics. 

3. Non-dissipative system hydrodynamics 

As is known, the hydrodynamic reduced description parameters should be chosen as 

the densities of the conserved quantities. In what follows the hydrodynamics based on the 

local collision integral is called as the standard hydrodynamics. It should be stressed that 

in the framework of standard hydrodynamics the following reduced description 
parameters are chosen: the particle number density, the momentum density and the 

kinetic energy density because the particle number, the momentum and the kinetic energy 

are conserved on the basis of the nonlocal collision integral. But in the problem under 
consideration we cannot use the kinetic energy density as the reduced description 

parameter because the kinetic energy is not conserved on the basis of the nonlocal 

collision integral. So we propose the following set of the reduced description parameters: 
the particle number density, momentum density and total energy density of the system. 

As is known, in the standard hydrodynamics the system velocity and temperature are 

often used as the reduced description parameters instead of the momentum density and 

the kinetic energy density. For example, the well-known Maxwellian distribution function 

is usually written in terms of the system velocity and temperature. So it is important to 

introduce the velocity and the temperature for the problem under consideration. The 

definitions of the reduced description parameters in terms of the one-particle distribution 

function should be the same as in the equilibrium case. As is known [6], in equilibrium 

we have 
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where υ  is the system velocity and T  is the system temperature. Here and in what 

follows, the temperature is written in energy units. The expression for eq

pot  in (9) should 

be truncated up to the second order of smallness in small interaction because the basic 
equation of the theory (1) is also truncated up to the second-in-interaction order. 
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the last expression in (11) is a consequence of (9), (10), (2), and (5). Expressions (11) are 

the definitions of the system temperature and velocity. Moreover, these expressions are 

additional conditions to the kinetic equation (1). As can be seen, these conditions contain 

the two-particle distribution function, so the result (3) with account for (4) should also be 
taken into account in (11). It should be stressed that the system temperature is defined on 

the basis of the total system energy rather than of the kinetic one. 

We describe the hydrodynamic stage of system evolution, so we write the functional 
hypothesis 
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The distribution function pf  is sought in a perturbation theory in the small parameter g :  
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On the basis of the functional hypothesis (12) the kinetic equation (1) can be 
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On the basis of (8) it can be shown that the expression for ( , )t x  in (11) can be rewritten 

as:  
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It should be noticed that all the quantities of the theory should be truncated up to the 

second order in small interaction, so 

2

0 2

2 3

3 2 2 2
n

n

T T m n n
nV B mn

t n t T t t

                     

 4

2 2
1

6

n
B O

T

      
. 

(17) 



V. N. Gorev, A. I. Sokolovsky 

16 

 

On the basis of (16) and (17) it is obvious that in the leading-in-gradients order the 

kinetic equation (14) takes the form 

1( , ) 0LI f   (18) 

where 
1( , )LI f  is the local Landau collision integral. As is known, the solution of (18) 

is the Maxwellian distribution function  
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In the leading-in-gradients order the additional conditions (11) and (15) take the form 
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By a straightforward calculation on the basis of (19) it can be shown that the first two 

expressions in (20) are valid. The third expression in (20) on the basis of (2)–(4) can be 

rewritten as 
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here for simplicity the dependence of the reduced description parameters on 
1x  and t  is 

not stressed. By a straightforward calculation on the basis of (19) it can be shown that 

(21) is valid; the following change of variables should be made during the integration 

over 
1dp  and 

2dp : 

1 2 y p p , 
1 2 12  z p p p . (22) 

So in the leading-in-gradients order the Maxwellian distribution function (19) 

satisfies both the kinetic equation and the additional conditions. So the Maxwellian 

distribution function is the system distribution function in the leading-in-gradients order. 

On the basis of (19), (16), (17), (5), and (7), with the help of the substitution (22), one can 

obtain the following hydrodynamic equations truncated up to the second order in  : 
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(23) 

As can be seen, the obtained hydrodynamic equations (23) are truncated up to the 

linear order in small gradients and they are based on the Maxwellian distribution 

function. So the obtained equations (23) are the hydrodynamic equations of a non-

dissipative hydrodynamics. It should be stressed that they explicitly contain the quantities 

A , B , and 
0V  defined in (7) so the theory is valid if all these quantities are finite. If the 

integrals in (24) are infinite, then an artificial truncation of integration limits may be 

applied, such as, for example, the idea of the Coulomb logarithm [7]. If ( 0)V k   is 

infinite, then a straightforward calculation of system modes on the basis of (23) fails, and 
most likely the system has not only hydrodynamic, but also the so-called plasma modes 

(see [8]). But the investigation of the system kinetic coefficients on the basis of (23) most 

likely will not fail because, as known, the Vlasov term has no effect on the system kinetic 

coefficients and it is logical to expect that the irregular term will vanish after substitution 

of (23) and (19) into the linear-in-gradients order of (14). 

In the leading-in-interaction order the obtained hydrodynamic equations (23) 

coincide with the corresponding standard hydrodynamic equations, but the corrections of 

the first and second orders in small interaction are obtained. The non-dissipative 

hydrodynamics of the system under consideration is built: the distribution function and 

hydrodynamic equations are obtained in the non-dissipative case. 

4. Conclusions 

The non-dissipative hydrodynamics of a one-component slightly non-uniform gas 

with weak potential interaction is constructed in this paper. The paper is based on the 

kinetic equation in the case of weak interaction which is truncated up to the second-in-

interaction order, and the second-order collision integral is nonlocal. The non-locality of 

the collision integral is taken into account. 

The following hydrodynamic reduced description parameters are proposed: the 

particles number density, the momentum density, and the total energy density because 

they are the densities of the conserved quantities; the total energy is the sum of the kinetic 

and potential energies. It should be stressed that, in contrast to the standard 

hydrodynamics which is based on the local collision integral, the kinetic energy density 

cannot be chosen as a reduced description parameter, because it is not conserved on the 

basis of the nonlocal collision integral. The corresponding temperature and velocity 

definitions in terms of the one-particle distribution function are proposed above, and the 

temperature is defined on the basis of the total system energy rather than of the kinetic 
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one. The definitions of the particle number density, the velocity and the temperature are 

additional conditions to the kinetic equation. 

The non-dissipative system hydrodynamics is constructed. It is shown that in the 

leading-in-gradients order the one-particle distribution function is the Maxwellian one. 

The hydrodynamic equations are obtained in the linear-in-gradients order, i.e. the non-

dissipative hydrodynamic equations are built. These equations contain quantities which 

are expressed in terms of the Fourier-transform of the system pair potential. If they are 

infinite, then the idea of artificial truncation of the limits of integration may be applied 

(see, for example, the Coulomb logarithm [7]). If the Fourier-transform ( 0)V k   is 

infinite, then a straightforward calculation of the system modes based on the obtained 

hydrodynamic equations fails, and in such a case the system may have not only 

hydrodynamic, but also the so-called plasma modes (see the corresponding investigation 

for plasma in [8]). But it is expected that the system kinetic coefficients may be sought on 

the basis of the developed equations even if ( 0)V k   is infinite because most likely the 

infinite terms vanish in the derivation of the kinetic equation of the linear-in-gradients 

order. 

The results of this paper are the basis of our future investigation of the dissipative 

system hydrodynamics.  
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