
ISSN 2616-8685 .JOURNAL OF PHYSICS AND ELECTRONICS Vol. 26(1), 2018 

DOI 10.15421/331803 

19 

 

LANDAU EFFECTIVE HAMILTONIAN AND ITS APPLICATION  

TO MAGNETIC SYSTEMS 

K. M. Haponenko*, A. I. Sokolovsky 

Oles Honchar Dnipro National University, Dnipro, Ukraine 

*e-mail: kgaponenko@i.ua 

The Landau definition of the effective Hamiltonian (of the nonequilibrium free energy) is realized in a 

microscopic theory. According to Landau remark, the consideration is based on classical statistical 

mechanics. In his approach nonequilibrium states coinciding with equilibrium fluctuations are taken into 

account (the Onsager principle). The definition leads to the exact fulfillment of the Boltzmann   principle 

written in the form with the complete free energy. The considered system is assumed to consist of two 

subsystems. The first subsystem is an equilibrium one. The second subsystem is a nonequilibrium one and 

its state is described by quantities that are considered as order parameters. The effective Hamiltonian is 

calculated near equilibrium in the form of a series in powers of deviations of the order parameters from 

their equilibrium values.  The coefficients of the series are expressed through equilibrium correlation 

functions of the order parameters. In the final approximation correlations of six and more order 

parameters are neglected and correlations of four parameters are assumed to be small that leads to the 

corresponding perturbation theory. The developed theory is compared with the phenomenological Landau 

theory of phase transitions of the second kind. The obtained results are concretized for paramagnetic-

ferromagnetic system. The consideration is restricted by paramagnetic phase. 
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1. Introduction 

Following Landau [1] modern theory of phase transitions of the second kind is based on 

an expression for the thermodynamic potential of a nonequilibrium state described by 

equilibrium variables which are natural for this potential and some addition of variables a  

named order parameters. The considered system is assumed to consist of two subsystems. 
The first subsystem is an equilibrium one with the temperatureT . The second subsystem is a 

nonequilibrium one and its state is described by the order parameters. In the vicinity of the 

phase transition temperature cT  parameters  a  are considered to be small and, for example, 

the Landau free energy has the form of a truncated expansion in series of a  powers  
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,
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a a a a a a a

C T n B T n          . 
(1) 

The  proposed  by  Landau theory considers functions of ,T n  in this expression as 

unknown ones, but their general properties were discussed in details by him. However, 
Landau did not propose a microscopic theory for calculating these functions. Nevertheless, he 

systematically considered [1-3] potential ( , , )F T n   as result of the Legendre transformation 

of the equilibrium free energy ( , , )F T n h  in the presence of external field ah of the form 

ˆ ˆ
a aa

U h  (hereafter cap over a quantity g  denotes its microscopic value ĝ ; in the 

considered here case of a system described by classical mechanics ĝ  is a function of the 

phase variables). A little bit later this idea was independent by elaborated in details by 

Leontovich [4, 5]. This approach (the Landau-Leontovich definition) gives the function 

( , , )LLF T n    which was  systematically  investigated in  our paper [6] where its realization  is 
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constructed in a microscopic theory. 

First of all, the modern theory of phase transitions of the second kind is a 

phenomenological one. It is assumed that basic properties of phase transitions do not 

depend on concrete expressions for coefficient functions in the expansion (1) [7]. 
However some investigations are devoted to development of a microscopic theory and 

calculation of nonequilibrium free energy especially. See for example a substantial 

review [8] of microscopic theory in the vicinity of the critical point of a liquid–vapor 
system. 

In the present paper a general idea of nonequilibrium free energy construction that 

belongs to Landau too is realized in a microscopic theory. This approach starts from the 

Boltzmann formula for distribution ( )w   of order parameter a  in an equilibrium system 

that is written in the form 

( , ) ( , , )

( )
LF T n F T n

Tw e

 

  ,         ( ) 1d w         ( aa
d d   )  (2) 

where ( , )F T n  is exact equilibrium free energy of the system (the temperature T  is 

measured in energy units). According to Pitaevskii [1], Landau considered this formula as 

a definition of nonequilibrium free ( , , )LF T n   and proposed to name it as the effective 

Hamiltonian of the system in the space of order parameters a  (see about terminology 

also [9]). Formula (2) is the analog of the canonical Gibbs distribution 

ˆ( , )F T n H

Tw e



 ,    Sp 1w    
(3) 

where Ĥ  is the Hamiltonian of the system. Hereafter the notation  

ˆSpg w g  (4) 

for average equilibrium value g  of a quantity g  is used (to be short Sp denotes 

integration over phase space).  

Note, that the Boltzmann formula is not exact one for the Landau–Leontovich 

definition of the nonequilibrium free energy ( , , )F T n  (see discussion in [4, 5]). Exact 

microscopic expression for distribution function ( )w   is given by standard expression 

ˆ( ) Sp ( )w w           ( ˆ ˆ( ) ( )a aa
      ). (5) 

Thus, the definition (2), (5) accounts only nonequilibrium states that arise in equilibrium 

fluctuation. This restriction can be named the Onsager principle that was introduced by 

him in his theory of the kinetic coefficients symmetry. 

Finally the Landau effective Hamiltonian  is given by the formula 

ˆ

ˆ( ) lnSp ( )

H

T
LF T e


      (6) 

(hereafter variables ,T n  are omitted from the notation ( , )F T n , ( , , )LF T n  ). This 

formula coincides with the Landau expression given in [2] without discussion. 

The present paper is constructed as follows. The section 2 develops general theory 

for calculation of the Landau effective Hamiltonian in a perturbation theory in small order 
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parameters. The section 3 is devoted to an application of the elaborated general theory to 

paramagnetic–ferromagnetic phase transition. 

 

2. The Landau effective Hamiltonian 

Let us turn to the calculation of the Landau free energy (the Landau effective 

Hamiltonian) ( )LF  that consequently gives 

 
ˆ ˆ( )

ˆ ˆSp ( ) Sp ( ) /
LF H H

sT T Te e T e T


  

        

ˆˆ ( )

Sp
2

a a aa
i us H

T T
T

du e e

 



       

(7) 

with account for the notations and formulas used 

a

a

du du , 
a

a

du du





  ,  
1

( )
2

a ai u

a adu e






  
  . (8) 

The equilibrium function of Gibbs distribution in the presence of external field 

ˆ ˆ
a aa

U h   has a form 

ˆ ˆ[ ]h a aa
F H h

T
hw e

  
  , Sp 1hw  . 

(9) 

Here hF  is the free energy of the system in the presence of an external field, which we 

use in calculations as an auxiliary value.  Function hF  is given by the formula 

ˆ ˆ

Sp

a ah a
H hF

T Te e

 
 


 , 

(10) 

which allows us to rewrite the expression (7) for Landau free energy in the form 

ˆ ˆ( ) ( )

Sp
2 2

a a a a a aa a aL
H i u iu ius sF F iu

T T T T T
T T

e du e e du e e

   
  

  
             . (11) 

Let us introduce now generating function ( )uF  for equilibrium averages  

1 1
ˆ ˆ ˆ ˆ... Sp ...

n na a a aw      (12) 

in the absence of an external field by the formula 

( ) Sp

a aa
u

Tu we





F . 
(13) 

Obviously, standard identities are true for it 

1 1

10 ...

( 1)
ˆ ˆ( ) ... ...

! n n

n

n

a a a an
n a a

u u u
T n






   F ,           

1

1 0

( ) ( 1)
ˆ ˆ...

... s

s

s n

a an

ua a

u

u u T

 
  

 
F

 (14) 

According to (10), the definition (13) of the generating function ( )uF  gives the following 

formula for the free energy of the system in the external field 
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( )
hF F

Te h


 F . (15) 

With taking this into account, the expression (11) for the Landau free energy ( )LF   gets 

a form 

( )

( ) ( ) ( ) ( )
2 2

a a a aL a a
iu ius sF F

T T T
T T

e du e iu T du e T

                      F F F ,  

i.e. such a representation for a nonequilibrium free energy is true  

( )

( ) ( )
LF F

Te T

  
  


F . (16) 

Here the formula is taken into account 

f ( ) f ( / )ikx ikxk e i x e    , (17) 

that can be easily proved by the function f ( / )i x    expansion in Taylor series. The 

generating function of average values (12) is related to the generating function ( )hG  of 

the correction function 
1

ˆ ˆ...
na a    with a known formula 

eq

( )

( )

a aa
u

u
Tu e


 



G

F   (
eq ˆSpa aw   ) 

(18) 

(
eq
a  is an equilibrium value of the order parameter; see, for example, [9]). For the 

generation function ( )hG  such standard identities are true 

1 1

12 ...

( 1)
ˆ ˆ( ) ... ...

! n n

n

n

a a a an
n a a

u u u
T n






    G ,      

1

1 0

( ) ( 1)
ˆ ˆ...

... s

s

s n

a an
ua a

u

u u T

 
   

 
G

. (19) 

With taking into account (18), the formula (16) for the Landau free energy ( )LF   can be 

consistently presented in the form 

eq( ) ( ) ( )
eq( ) ( )

L
aa

a

F F T T
Te e e

      
  


      

G G

 

eq eq( )
( ) ( ) ( )1 1

(2 ) (2 )

T
iu iTu iu

s s
e due due e


  

  
G

G
. 

 

In this case the relation  

f ( ) f ( )
a

xx a e x


  , 

(20) 

was taken into account which is another form of writing the expansion of a function 

f ( )x a  in Taylor series in powers of a . 
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So, the following final expression for the Landau free energy is given by the formula 

( )

( )1

(2 )

L

a aa

F F
iuiTuT

s
e due e

 


  G
  (

eq
a a a    ), (21) 

here according to (19), 

1 1

12 ...

( )
ˆ ˆ( ) ... ...

! n n

n

n

a a a a

n a a

i
iTu u u

n






    G . (22) 

The integral included in (21) can be precisely calculated only if we restrict ourselves with 

quadratic form as the expression for ( )iTuG   

2

,

1
( )

2
a b ab

a b

iTu u u A  G , ˆ ˆ
ab a bA     . (23) 

In this approximation we have  

1

,2

( ) 1

( ) 2
1/2

1 1

(2 ) [(2 ) det ]

L
ab a ba ba aa

F F
AiuiTuT

s s
e due e e

A

 
    

  G
≃  (24) 

and the Landau free energy gets the form 

1

,

( ) ln[(2 ) det ]
2 2

s
L ab a b

a b

T T
F F A A     ≃ . (25) 

Such an approximation for nonequilibrium free energy can be called the Gaussian one. 

For small a  the integral (21) can be expanded in series in powers of a  

1 1

1

( )

0 ...

1 ...

...
L

n n

n

F F

T
a a a a

n a a

e A A

  



      (26) 

where 

( )
0

1

(2 )

iTu

s
A due

  G
, 

1 1

( )
...

( )
...

(2 ) !n n

n
iTu

a a a as

i
A due u u

n




  G
. (27) 

To obtain an explicit expression for the free energy, we should compute the logarithm of 

the series in (26). This problem is solved by the formula 

2 3 4 5
0 1 2 3 4ln[ ( )]b b x b x b x b x O x       

2 3
2 331 2 1 1 2 1

0 2 2 3
0 0 00 0 0

ln ( )
2 3

bb b b b b b
b x x x

b b bb b b

 
        

 
 

2 2 4
4 51 34 2 1 2 1

2 2 3 4
0 0 0 0 0

( )
2 4

b bb b b b b
x O x

b b b b b

 
      
 

, 

(28) 

if we make the following substitution 

1x  , 
0 0b A , 

1 1

1

...

...

...
n n

n

n a a a a

a a

b A   .  
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Thus, the problem of calculating Landau nonequilibrium free energy ( )LF   is solved in 

the general form with accuracy up to contributions of the fourth order in deviations of the 
order parameter from its value in equilibrium in the absence of an external field 

eq
a a a    .  The further concretization of the obtained results is possible only with 

the specification of the problem and taking into account the symmetry of the system that 

simplifies the result. 

3. The Landau effective Hamiltonian of an isotropic magnetic system  

in the paramagnetic phase 

Let consider the case of a magnetic isotropic system in the absence of an external 

magnetic field. In this case the components of the magnetic dipole moment vector of the 

system nm   play the role of the order parameters a in phase transition paramagnetic-

ferromagnetic. Therefore, we set the problem of calculation of the nonequilibrium Landau 

free energy (the Landau effective Hamiltonian) of a spatially homogeneous paramagnetic 

with a small magnetization. 

A microscopic value of a magnetic moment ˆ
nm  changes sign at the time reversal but 

the Hamiltonian Ĥ  is unchanged. So, the mean values (12) of products of an odd number 

of magnetic moments ˆ
nm  are zero 

 
1 2 1

ˆ ˆ... 0
sn nm m


 . (29) 

At the same time, according to (14), (18), and (19), an equilibrium average 
0nm  and 

correlation functions of an odd number of moments are also zero 

0 0nm  , 
1 2 1

ˆ ˆ... 0
sn nm m


   . (30) 

Formulas (26) and (27) for the Landau free energy ( )LF m take the form 

1 2 1 2

( )

0 ...

1

...
L

s s

F F m

T
n n n n

s

e A A m m

 



  ; 

 
3 ( )

0 3

1

(2 )

iTuA d ue
  G

,         
1 2 1 2

3 ( )
... 3

( 1)
...

(2 ) (2 )!s s

s
iTu

n n n nA d ue u u
s




  G
 

(31) 

because under conditions (29) generating functions ( )uF  and ( )uG  are even functions of 

the vector 
nu  (here Einstein’s rule is used in the first formula). In the case of an isotropic 

system, that is true for the paramagnetic phase, the first tensors 
1 2... sn nA  have a structure 

3 ( )

0 3

1

(2 )

iTuA d ue a 
  G

,  
3 ( )

3

1

(2 ) 2!

iTu

lm l m lmA d ue u u b   
  G

, 

 
3 ( )

3

1
( )

(2 ) 4! 3

iTu

lmsq l m s q lm sq ls mq lq ms

c
A d ue u u u u         

  G
 

(32) 

and expression (31) for the Landau free energy gives 

( )

2 4 ...
LF F m

Te a bm cm


             (
2

n nm m m , 
4 2 2( )m m ). 

(33) 
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The coefficients a , b , c , according to (33), are given by the formulas 

3 ( )

3

1

(2 )

iTua d ue


  G
, 

3 ( ) 2

2

1

(2 ) 3!

iTub d ue u


   G
, 

 
3 ( ) 4

3

1

(2 ) 5!

iTuc d ue u


  G
. 

(34) 

Now we put in formula (28) 

0b a ,    1 0b  ,    2b b ,   3 0b  ,   4b c   

and therefore obtain such a summary expression for the Landau free energy in the form of 

a series in moment powers  

2
2 4

2

( 2 )
( ) ln ...

2
L

Tb T b ac
F m F T a m m

a a


      (35) 

This formula, taking into account (34), shows that the coefficient at 
2m  is positive 

in accordance with the Landau theory of the phase transition paramagnetic–ferromagnetic 

[3]. 

The coefficients , ,a b c  in (35) are given by formulas (34) and expressed through 

the correlation functions
1

ˆ ˆ...
sn nm m  . Contributions of correlation functions of four or 

more moments can only approximately be taken into account. Really, the simplest 

correlation functions 
1

ˆ ˆ...
sn nm m   in the case of an isotropic system have the tensor 

structure 

0
ˆ ˆ

l m lmm m b    ,    0ˆ ˆ ˆ ˆ ( )
3

l m s q lm sq ls mq lq ms

c
m m m m           , (36) 

where in short (33) notations 

2

0

1
ˆ

3
b m   ,  

4

0

1
ˆ

5
c m   . (37) 

In this case, according to (19), the generating function takes the form 

2 40 0

2 4
( ) ...

2 24

b c
u u u

T T
  G . (38) 

According to (34), the calculation of coefficients a , b , c  in the expression for the free 

energy (35) is reduced to the calculation of integrals  

2 40 0 ...
3 2 24

3

1

(2 )

b c
u u

a d ue
  


  , 

2 40 0 ...
3 2 2 24

3

1

(2 ) 3!

b c
u u

b d u u e
  

 
  , 

 

2 40 0 ...
3 4 2 24

3

1

(2 ) 5!

b c
u u

c d uu e
  


  . 

(39) 

It is clear from (39) that we can take into consideration the contributions of four and 

more moments only approximately. Neglecting all correlations 
2sm   with 2s  , we 

have for the coefficients a , b , c  
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42 40 0
2

1/2
2 2 62 24

2 2 3/2
00 0

1 2

2

b c
u u

a du u e d e e s
b

      
   , 

42 40 0
2

1/2
4 4 62 24

2 2 5/2
00 0

1 2

2 3! 3

b c
u u

b du u e d e e
b

        
   , 

 

42 40 0
2

6 6 62 24
2 1/2 2 7/2

00 0

1 1

2 5! 2 15

b c
u u

c du u e d e e
b

      
     

(40) 

(
2

0 0/c b  ). Further calculation can be done assuming that the correlation function 

4m̂   is small. In this case, according to (37), the value 
0c  is small and the dimensionless 

small parameter of the theory is  . Thus, 

2
1/2

2 4 2

2 3/2

0 0

2
(1 ) ( )

6
a d e O

b


 

     
  , 

2
1/2

4 4 2

2 5/2

0 0

2
(1 ) ( )

3 6
b d e O

b


 

      
  , 

26 4 2

1/2 2 7/2

0 0

1
(1 ) ( )

2 15 6
c d e O

b


 

     
  . 

(41) 

If the integral value is taken into account 

22

0

( 1/ 2) / 2
s

d e s


   , (42) 

we have  
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3/2 3/2 3/2 3
0

1 5
1 ( )

2 2
a O

b

        
,    

2

5/2 3/2 5/2
0

1 35
1 ( )

242
b O

b

         
, 

 
2

9/2 3/2 7/2 3
0

1 21
1 ( )

2 2
c O

b

        
. 

(43) 

Taking into account these expressions, the free energy ( )LF m (35) also need to be 

calculated in the form of a series in  powers that gives 

  2 4
0 2

0 0

( ) 2
3 5 5

ln (1 )
2 8 2 6 24

L

T T T T
F b m m

b b
F m          . (44) 

Proceeding from the expressions (37) for the coefficients 
0b , 

0c , the Landau free 

energy (the Landau effective Hamiltonian) can be written in such a final form 
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2 4
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ˆ ˆ3 2
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3
(

3 4 ˆ2
)L

T m m
F
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F m

    
   

 


  

    

4 4
2 4

2 2 2 2 4

ˆ ˆ3 3 27
1

ˆ ˆ ˆ2 2 40

T m T m
m m

m m m

    
         

 

(45) 

This expression has the form of a series in powers of small magnetic moment lm  written 

with the accuracy up to the fourth order inclusive. The coefficients of this series are 

calculated neglecting by the correlations 
2ˆ sm   with 2s   in the perturbation theory in 

the parameter   that assumes the fulfillment of the inequality  

2 4 2 2
0 0

ˆ ˆ/ 9 / 5 1c b m m       ≪ . (46) 

Formula (45) gives the Landau free energy (the Landau effective Hamiltonian) in the 

paramagnetic phase. In accordance with his theory of phase transitions, the sign of the 

coefficient at 
2m  is positive. In contradiction with the Landau theory coefficient at 4

m , 

has negative sign. Perhaps, this is a consequence of discussible assumption that 

correlations of the four magnetic moments are small near the transition point 
paramagnetic–ferromagnetic. 

Let us compare the Landau nonequilibrium free energy (45) of a magnetic in 

paramagnetic phase with the corresponding expression for the Landau–Leontovich 

nonequilibrium free energy 

4
2 4

0 2 2 4

ˆ3 27
( )

ˆ ˆ2 40
LL

T T m
F m F m m

m m

 
  

   
 (47) 

obtained in our paper [6]. This formula gives truncated series of expansion ( )LLF m  in 

powers of m  neglecting terms of the order 
2sm  with 2s  . It is seen a full match of 

both expressions for nonequilibrium free energy at the condition (46). 

4. Conclusions 

We have realized the Landau definition of the effective Hamiltonian (the 

nonequilibrium free energy) of a system in a microscopic theory. This definition is 

formulated in such a way that the Boltzmann principle is an exact result and effective 

Hamiltonian determines the total equilibrium free energy. The developed theory is 

applied to a magnetic in the paramagnetic phase. The result is compared with the 

Landau–Leontovich nonequilibrium free energy obtained by us early in [6]. A complete 

coincidence of the results is seen in the limit of small magnetic moment correlation 

functions of the fourth order. 

The final expression for the Landau effective Hamiltonian of an isotropic magnetic 

system in the paramagnetic phase shows that the coefficient at the second power of the 
magnetic moment is positive and the coefficient at the fourth power is negative at an 

arbitrary temperature. The positivity of the coefficient for the second power is in 

agreement with the Landau theory of phase transitions of the second kind. However, the 
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negativity of the coefficient at the fourth power contradicts to standard theory. In this case 

the sixth in magnetic moment terms should be taken into account in the theory [7]. 

The obtained general results are specified for the phase transition between the 

ferromagnetic and paramagnetic phases. In the calculation of nonequilibrium free energy 
in the paramagnetic phase the system is considered as an isotropic one, i.e. its states are 

rotationally invariant. In its physical content, the phase transition ferromagnetic–

paramagnetic is accompanied by the mentioned symmetry breaking and this should be 
taken into account when investigating the situation in the ferromagnetic phase. This is 

planned to be done in the future.  

The developed theory can be generalized for the case in which magnetization of the 

system ( )nM x  is considered as the order parameter by the substitution in our general 

formulas (26), (27)  

( )a nM x  ,       
3... ...

a n

d x  ,       ( )a nu u x   

that allows to account the fluctuation effects in the theory (see, for example, [7, 9]). 
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