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The heat capacity of decagonal quasicrystals of the Al–Co–Cu or Al–Co–Ni alloys was calculated at 

the temperatures of 600, 700, and 900 K in this work. The expression for the heat capacity of the 

quasicrystals was obtained based on the Debye model. For the quasicrystals, the linear “excessive” heat 

capacity is observed in the range of temperatures between 400 to 600 К which means the deviation from the 

3R Dulong-Petit value. The heat capacity at a temperature of 900 К is about 28.4 J/molК which is higher 

than the Dulong-Petit value ( 25 J/molК). The “excessive” heat capacity relates to the peculiarities in the 

decagonal quasicrystal anisotropy. These crystals are quasiperiodic in the x and y directions, and periodic 

in the z direction. As a result, there is a difference in the dispersive laws in the different directions. The 

Debye temperature values have essential influence on the temperature dependencies of the heat capacity of 

the decagonal quasicrystals. Thus, the higher the Debye temperature and the larger “excessive” heat 

capacity, the more stable are considered the quasicrystals exposed to the temperature effects. 
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1. Introduction 

Since the first discovery of stable decagonal quasicrystals (the D-phases) in the slowly 
solidified Al–Co–Cu and Al–Co–Ni alloys, many papers dealing with solidification process, 

stability and anisotropy in physical properties (ten-fold periodic direction versus two-fold 

quasiperiodic direction) have been published [1–3]. The heat capacity of decagonal 

quasicrystals is of special interest. This feature is directly connected with the distribution of 

vibration energy among oscillators – vibrational degrees of freedom. Besides, heat capacity 

obeys the Gruneisen law and depends on linear expansion coefficient. From these 

considerations, the conclusion can be made that heat capacity is responsible for the 

quasicrystal resistance to temperature effects such as those that occur during the contact of 

the quasicrystals with molten metal alloys [4]. The experimental studies [5,6] showed that the 
quasicrystals have so called “excessive” heat capacity at a temperature of about 470 – 550 К. 

The increase in the “excessive” heat capacity reaches maximum in the temperature range 

between 1000 to 1200 К and acquires value of about 33 J/mol·К. With the following increase 

in a temperature, the “excessive” heat capacity starts decreasing up to quasicrystal structure 

fracture. However, explanation of such heat capacity behavior of the quasicrystals is scarce. 

Therefore, the aim of this paper is to consider the effect of temperature on the heat capacity 

of the decagonal quasicrystals, since its role for the stability of the D-phases has been 

assumed. 

2. Results and discussion 

To calculate the temperature dependence of the heat capacity of the decagonal quasicrystal 

phases of the Al–Co–Cu and Al–Co–Ni alloys from the positions of the 

theory of high anisotropic crystals, the methods of the Debye model have been used. 

They apply substitution of the upper integration limits by the finite values – the Debye 

frequency ~ ωD or the corresponding wave vectors. 

For anisotropic solid, free energy can be written as 
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where V – volume, uz – acoustic wave velocity, kz – wave vector in the z direction,  – 

group velocity,  – stiffness coefficient. 
Expression (1) considers the peculiarities in the quasicrystal anisotropy. Thus, in the kxky 

plane, the dispersive distribution that is similar to the Debye distribution in the three-

dimensional space can be applied, such as 2const  222

yx kk  . In the z direction 

the dispersive distribution is const kz. 
For anisotropic decagonal quasicrystals, the atomic interaction is stronger in the 

dxdy plane than that in the z direction. For inner integral, we obtain the following 

expression  
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where 42 a
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z
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ℏ  – the integration limit.  

On expanding into a series of еz up to a third term and ex up to a second term, we 

obtain for (2) 
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For further integration in the direction of the wave vector zk , we additionally 

expand the function 



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2

1ln
x

 into a series up to a fourth term. Considering the low 

values of some coefficients in the square terms of the dispersive frequency law, the terms 

of the fourth order cannot be ignored. Then, the inner integral of expression (1) can be 
given by 
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To integrate over 
zk , we additionally substitute variables 
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where bku
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On integrating by parts, we can write 
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For free energy 












 5432

2

22

3

160

1

48

1

12

1

4

3
ln

2
yyyyy

y

u

VT
F

ℏ
 

(7) 

considering that L
T

ku
T

y z

ℏℏ
 4

max

22

max

2
, we obtain 














2

3322

2

2

80

1

24

1

6

1

2

3
lnln

2 T

L

T

L
LTTTLT

u

VL
F

ℏℏ
ℏℏ

. 

(8) 

Entropy is given by 
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Then, from expressions (8) and (9), internal energy can be found as 
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Correspondingly, heat capacity can be given by 
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where the expression 
4

max

22

max

2  zkuL ℏℏ  has meaning that is similar to the 

Debye temperature. 

Expression (11) consists of three terms, two of them depend on temperature and 
have opposite signs. This consideration leads to the “excessive” heat capacity in the 

certain temperature range. Besides, this feature essentially depends on the generalized 

Debye temperature. In Fig. 1 the temperature dependencies of calculated heat capacity of 
the decagonal quasicrystals of the Al–Co–Cu and Al–Co–Ni alloys are shown. 
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Fig. 1. The temperature dependencies of the calculated heat capacity of 

the decagonal quasicrystals of the Al–Co–Cu and Al–Co–Ni alloys at 

the following Debye temperatures: 1 – 600 К; 2 – 700 К; 3 – 900 К. 

3. Conclusions 

For the heat capacity of the decagonal quasicrystals of the Al–Co–Cu and Al–Co–Ni 

alloys, the deviation from 3R value (the Dulong–Petit law) can be assumed. The heat 

capacity at the temperature of 1000 К is about 28.4 J/molК which is higher than the 

Dulong–Petit value ( 25 J/molК). The increase in the “excessive” heat capacity of the 

quasicrystals approaches to the linear dependence in the range of temperature between 

400 to 600 К, which is in good agreement with the experimental dependencies obtained 
by authors [5,6]. According to the energy equipartition law, the “excessive” heat capacity 

of the quasicrystals distributes among the larger number of freedom degrees as compared 

to that of crystal phases. As a result, the resistance of the quasicrystals to temperature 

effects, i.e. their stability, is higher than that of periodic crystals. 
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