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The paper considers a spherically symmetric configuration of the gravitational and electromagnetic 

fields with allowance to the cosmological constant, and its quantization. After dimensional reduction, the 

original action is transformed to new variables in the R- and T-regions. The exclusion of the non-dynamic 

degree of freedom from the obtained action leads to an action for the geodesic in the configuration space, 

which proves to be conformally flat. We use the Gitman–Tyutin formalism for the obtained dynamical 

system, which Lagrange function is degenerate. After performing a suitable canonical transformation, the 

constraints found from the Lagrange function are reduced to the canonical form. Herewith the physical 

part of the Hamilton function vanishes. To construct quantum theory, we introduce additional physical 

quantities – charge and mass functions. Since Hamilton operator equals zero, it leads to the fact that the 

desired wave function of the system obeys only the eigenvalue equations for the mass and charge operators. 

The solution of these equations leads to continuous charge and mass spectra. 
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1. Introduction 

Earlier, using Gitman‒Tyutin method [1], in paper [2] the quantum model of a charged 

black hole (BH) based on a spherically symmetric configuration of the electromagnetic and 

gravitational fields was considered. It was shown that in this model the mass and charge 

spectra were continuous. From the latest data from astrophysical observations of the global 

influence of dark energy on astrophysical structures, it would be interesting to consider this 

model taking into account the cosmological constant. Although the models under 

consideration belong to very small scales, the role of the cosmological constant for them is 

still unclear, especially in the early stages of the Universe. Basing on this, we consider the 

model of charged BH taking into account the cosmological constant, with using the Gitman–

Tyutin method. Allowance for dark energy cardinally changes the global space-time and 
superspace structure of the considered configuration, the study of which turns out to be a 

difficult task. In this paper we offer the first results of the study. Subsequent results will be 

reviewed in further publications. 

2. Classic description of charged BH with cosmological constant 

The total action for the gravitational, electromagnetic fields in space-time 
4V  with 

cosmological constant   has the form: 
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Here c – velocity of light,  – gravitational constant, (4)R – scalar curvature of space-time, 

F – electromagnetic field tensor,  – cosmological constant, g – determinant of the metric 

tensor. 

For a spherically symmetric configuration, the interval can be reduced to the form:  

      2
2 0 0 0 2 2 0 2, , ,ds h x r dx g x r dr R x r d   , (2.2) 

where 2 2 2 2sind d d     . After integrating over the angles and discarding the surface 

term, the action (2.1) takes the form 
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Here 1

1,

0

0, , xXXxXX  . Space-time of considered fields configuration 

consist of R- and T-regions. According to the Birkhoff theorem we can choose the 

coordinates in which the metric depends on the spatial coordinate r in the R-regions and 

on the time coordinate 
0x  in the T-regions: 

      
2

2 0 2 2

Rds h r dx g r dr R r d    , (2.4) 

       20202002 dxRdrxgdxxhds T   (2.5) 

Lagrange functions in this regions takes simple form: 
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In the R- and T- regions, it is convenient to go over to the new variables, respectively: 
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Then the Lagrange functions (2.6) and (2.7) take the uniform form: 
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Here  ,3cs   – evolutionary parameter. Variable N in (2.9) is non-dynamical, and 

leads to the constraint 0 NL . Expressing N from Lagrange-Euler equations and 

substituting in (2.9), we get: 

  2 2 2 2 2

sup
1 ( ) ( )S s u n du dn u n df       . (2.10) 

Thus, original action is reduced to the action for a geodesic in a three-dimensional 

pseudo-Riemannian space with the metric 

  2 2 2 2 2 2
1 ( ) ( )d u n dn du u n df         . (2.11a) 

Note that the resulting geodesic equations together with the constraint are equivalent to 

the Einstein equations for the metrics (2.4), (2.5). The metric can be reduced to 

conformally-flat type  

  2 2 2 2 2
1 ( )d a b da db dw         (2.11b) 

by the following conversion of field variables: 
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Lagrange function (2.9) describes degenerate system, so for further construction of 

canonic formalism we shall use Gitman-Tyutin method [1]. After substituting variables 

(2.12) in (2.9), we introduce Hamilton function of the system in extended phase space 

Vi

i LVPH  . (2.13) 

Here i iV q ɺ  are generalized velocities corresponding to the generalized 

coordinates  , , ,iq a b w N . From the equations 
i

i VLP   we obtain the velocities 

wba VVV ,, , and primary constraint 0NP . Substituting the velocities in (2.13) and 

calculating the Poisson bracket of the primary constraint with the Hamilton function, we 

find the secondary constraint 
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The Poisson brackets of the constraint (2.14) and the Hamilton function vanish, so there 

are no new constraints. The Poisson brackets of the found constraints also vanish, so they 

are second type constraints. It means that the system contains two non-physical degrees 

of freedom. For the further formalism construction it is necessary to explicitly separate 

physical and non-physical degrees of freedom. This is achieved by performing the 

canonical transformation to new variables  ,
i

i
q p  with the following generating 

function of the second type [3] 
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In the new variables the constraints take the canonical form and the Hamiltonian function 

becomes equal to combination of constraints: 

4
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3. Quantum description of a charged black hole 

By putting constraints in (2.16) equal to zero, we obtain that the physical part of the 

Hamilton function also equals to zero. Thus, in quantization, the wave function of the 

system is determined only by operators of physical quantities. In our case, these 

quantities are mass and charge of the BH. In the classical case they are given by the 

relations 
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In variables  i
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Solving the question of operator ordering for the mass operator from the requirement of 

operators to be Hermitian, we obtain the following operators of mass and charge 

2
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By solving the system of eigenvalue equations for operators (3.3), we obtain the desired 

wavefunction for the considered field configuration 
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Thus, in the considered model, the charge and mass spectra are continuous, which is 

consistent with the papers [3 – 7]. The corresponding expression completely coincides 

with the result of [3] for a neutral BH, which indicates the correctness of the used 

method. Note also that the obtained result does not explicitly depend on  , which makes 

it similar to the result of [7] for an ordinary charged BH. However, these solutions are not 

identical, since in this paper the configuration space is conformally flat, but not flat as in 

[7]. 

4. Conclusion 

Thus, the application of the method by D.M. Gitman and I.V. Tyutin to build a 

model of a charged BH leads to continuous mass and charge spectra. The presence of the 

cosmological constant in this approach does not have an obvious effect on the wave 

function of the system. However, it leads to the fact that the configuration space becomes 

conformally flat. The obtained result is consistent with previous papers [2 – 7], and also 

corresponds to the results of papers [4, 8] for a BH without a cosmological constant. 
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