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Bose system of zero spin particles is considered in the presence of the Bose–Einstein condensate in the 

vicinity of the phase transition point. The system is investigated in the framework of the Bogolyubov model 

with the separated condensate. In this model an effective Hamiltonian of the system is introduced by 

replacing condensate creation and annihilation operators in system Hamiltonian by 1/2
0n  where 0n  is 

occupation number of the condensate state. According to Bogolyubov, the grand canonical thermodynamic 

potential related to the effective Hamiltonian is considered as nonequilibrium thermodynamic potential. In 

the present paper this potential is investigated as a function of the small variable 0n . With the help of the 

thermodynamic perturbation theory it is shown that it is expanded in a series over integer powers of 0n . 

This corresponds to the basic idea of the Landau theory of the phase transitions of the second kind. 

Coefficients at terms of the first and second orders in 0n  in the expansion are calculated for Bose gas in the 

main approximation in small interaction. Calculation of the coefficients at terms of the third and fourth 

orders needs accounting contributions of the thermodynamic perturbation theory at least of the 4th order 

and will be done elsewhere. It is established that the results obtained for Bose gas do not fit into the Landau 

theory of phase transitions of the second kind. Some comments that discuss the situation are given. 

Keywords: Bose–Einstein condensation, model with the separated condensate, nonequilibrium 

thermodynamic potential, phase transitions of the second kind.  
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1. Introduction 

The concept of nonequilibrium thermodynamic (TD) potentials was formed as a means 

of studying the formation of structures in macroscopic systems by methods of 

thermodynamics [1]. In particular, this applies to the theory of phase transitions of the second 
kind developed by Landau. In the applications of nonequilibrium TD potentials in the 

Boltzmann formula they are also called effective Hamiltonians of the system [2]. Parameters 

that describe the emerging structure are called order parameters. The use of this or that 

nonequilibrium TD potential is not significant. If the temperature T  and pressure p  of the 

system are controlled, the nonequilibrium Gibbs TD potential ( , , )T p   is used ( { }a   ; 

in a general case a  is a many-component order parameter). The most important property of 

a nonequilibrium TD potential is the presence of an extremum in equilibrium (in particular, 

( , , )T p   has a minimum). In fact, nonequilibrium TD potentials are characteristics of the 

state of incomplete equilibrium of the system. In this case one subsystem is in equilibrium 

with the parameters T , p  and another subsystem, which is not necessarily allocated in space, 

is nonequilibrium one and is described by the order parameter a  as a parameter of the 

reduced description. 
A number of approaches to the definition of nonequilibrium TD potentials are known in 

the literature. In the Landau–Leontovich approach [3, 4] (see also [5]) it is said that the 

nonequilibrium TD potential ( , , )T p   is obtained by the Legendre transformation of 

equilibrium TD potential in the presence of an external field ( , , )T p h  ( { }ah h , in the 

general case ah  is a many-component external field whose contribution to the Hamiltonian of 

the system has the form ˆ
a aa

h   where ˆ
a  is the microscopic value of the order parameter 

a ). Another definition, which also belongs to Landau [2], is introduced using the Boltzmann  
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formula, which gives the distribution of the values of the order parameter in equilibrium 

and is considered to be accurate. The realization of these definitions in the microscopic 

theory is developed in our papers [6, 7] for states in the vicinity of equilibrium. In this 

case the smallness of the deviation from equilibrium is the only small parameter of the 
theory. 

Another approach to the problem of constructing a nonequilibrium TD potential 

belongs to Bogolyubov [8] (see also [9]) and it is based on the fact that in the TD limit 

one can substitute the microscopic values of the order parameter ˆ
a   by its mean values 

in the system Hamiltonian. It introduces an effective Hamiltonian and an appropriate TD 

potential that plays the role of a nonequilibrium TD potential. Note that this corresponds 

to Landau's idea that the quantum nature of the order parameter is not important in the 
theory (see [2]). The realization of this definition in a microscopic theory in the vicinity 

of equilibrium, as the construction of a nonequilibrium TD potential in general, is an 

actual task (see, for example, [10, 11]). 
In this paper, we discuss the implementation of the Bogolyubov definition for the 

Bose system in the presence of condensate (in the literature there is an increase of interest 

to the study of Bose condensation (see, for example, [11, 12])). In such a system, the 

order parameter is the occupation number of the one-particle state with the momentum 

0p . At a temperature T  below the condensation temperature 0T , the equilibrium value 

0
on  of the occupation number is macroscopic, that is 0 /on V is a finite value ( V  is the 

system volume). Bogolyubov's approach to the theory of the Bose system in the presence 

of condensate is called the model with the separated condensate. In the framework of this 

approach, the Hamiltonian of the system Ĥ  is replaced by an effective one 0
ˆ ( )H n , the 

grand canonical TD potential ( , )T   is replaced by the function 0( , , )T n   that has its 

minimum in equilibrium [8] (see also [9]) and gives potential ( , )T  . The task of our 

work is to calculate the TD potential 0( , , )T n  in the case of a small occupation 

number 0n , that is, in the vicinity of the transition point. 

The paper is constructed as it follows. The section 2 describes the Bogolyubov 

approach to the theory of Bose systems in the presence of condensate.  The section 3 is 

devoted to the construction of the thermodynamic perturbation theory for calculating the 

noneqilubrium grand canonical potential near the phase transition point. 

2. The Bogolyubov model with the separated condensate 

Bose system of zero spin particles in the presence of condensation is considered. 

The Hamilton operator of the system is chosen in the usual form 

0 1
ˆ ˆ ˆH H H  ,  0Ĥ a a  p p p

p

,     

1 2 3 4 1 2 3 4

1 4

1 3 ,

...

1ˆ ( )
2

V a a a a 
     p p p p p p p p

p p

p p
V

 
(1) 

where 
2 / 2p m p ,  ( ) (| |) id e   px

p p x ,  

( )r is the potential of interaction between particles, V  is the volume of the system (we 

put that 1ℏ ). 

The grand canonical statistical operator of the system in the absence of condensate 
has the form 
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 ˆ ˆH N
w e

  
 , Sp 1w  ;   N̂ a a p p

p

 (2) 

where   is an inverse temperature,   is a chemical potential, N̂  is the operator of the 

number of particles. The thermodynamic potential   is determined by the normalization 

condition (2), and the average value A  of an arbitrary physical quantity A  with the 

corresponding operator Â  is calculated by the formula 

ˆSpA wA . (3) 

In the presence of the condensate, one-particle state with the momentum 0p  

contains the macroscopic number of particles 0 ~n V . In this case, condensate operators 

0a , 0a  can be considered as real c-numbers for which 0 0 0a a n  . In the approach 

developed by Bogolyubov (the model with the separated condensate) [8], the statistical 

operator 0( )w n  is introduced by replacing 1/2

0 0 0,a a n   

 0 0 0
ˆ ˆ( ) ( ) ( )

0( )
n H n N n

w n e
   

 ,  0Sp ( ) 1w n ɶ  (4) 

where 

1/2
0 0 0

0 1 0,
ˆ ˆ ˆ( )

a a n
N n N N n

   , 1/2
0 0 0

0 0 0,
ˆ ˆ ˆ ˆ( ) ( )

a a n
H n H H V n   ; 

 1/2
0 0 0

2
1/20 0

0 0 0 1 0 2 0 3 4,
ˆ ˆ ˆ ˆ ˆ ˆ( )

2a a n

n n
V n V N n V n V V

       
V V

 

(5) 

(
0( 0)   p ) and the notations 

1

0

N̂ a a



 p p

p

,       2

0

1ˆ ( )( ) . .
2

V a a a a h c  




   p p p p

p

p
V
 , 

 
1 2 3 1 2 3

1 3

3 2 ,

... 0

1ˆ ( ) . .V a a a h c  




    p p p p p p

p p

p
V

,  

 
1 2 3 4 1 2 3 44 1 3 ,

1234 0

1ˆ ( )
2

V a a a a 
 



    p p p p p p p pp p
V

 

(6) 

are introduced. Here and thereafter the trace Spɶ  is taken over the non-condensate states. 

The normalization condition (4) determines the TD potential 0( )n . Bogolyubov proved 

[8] (see also [9]) that the equilibrium value 0
on  of the occupation number 0n  can be found 

from the condition of the extremum of this potential 

0 0

0

0

( )
0

on n

n

n 





. (7) 

This suggests that one can consider 0( )n  as nonequilibrium TD potential of the Bose 

system in the presence of condensate. At the same time, the operator 0
ˆ ( )H n , which is 

defined by formula (6), can be considered as an effective Hamiltonian of the system. In 

addition, it can be proved [9] that formula (7) is equivalent to such expression for the 

chemical potential of the system 
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0 0

0
0

0

ˆ( )
Sp ( )

on n

V n
w n

n 


 


ɶ . 

(8) 

Equilibrium TD potential is given by the formula [8, 9] 

0( )on  . (9) 

The average value A  of an arbitrary physical quantity A  with an operator Â  should be 

calculated according to the formula [8, 9] 

0 0
ˆSp ( ) ( )o oA w n A n ɶ ,  1/2

0 0 0
0 ,

ˆ ˆ( )
a a n

A n A  . (10) 

The purpose of this work is to calculate the function 0( )n  near the condensation 

point when the value 0 /n V  is small. The obtained expression for nonequilibrium 

thermodynamic potential can be compared with the Landau theory of phase transition of 

the second kind. 

3. Construction of the thermodynamic perturbation theory  

The statistical operator 0( )w n  can be written in the form 

 0
ˆ ˆ( )

0( )
F

w n e
  


H U

, 1 2
ˆ ˆ ˆU U U  (11) 

where it is denoted 
2

0 0
0 0( )

2

n
F n n


   

V
,  0 0 1 4

ˆ ˆ ˆ ˆH N V  H , 

1/2
1 0 3

ˆ ˆU n V ,  0
2 0 2 1

ˆ ˆ ˆ( )U n V N


 
V

. 

(12) 

In the main approximation in the small occupation number 0n  the statistical 

operator 0( )w n  takes the form 

 0 0
ˆ

0

F
w e

 


H
,  0Sp 1w ɶ . (13) 

In accordance with the TD perturbation theory, the potential F  is given by the formula 

(see, for example, [9, 13]) 

0 0 1 2
ˆ ˆln[1+Sp (S +S +...)]F F w    ɶ  (14) 

where 
1

1 1

0 0

ˆ ˆ ˆ( 1) ... ( )... ( )
n

n
n n nS d d



       U U ,  0 0
ˆ ˆˆ ˆ( ) e e H H

U U
  . (15) 

The structure of operators ˆ
nS  is determined by the formulas 

1 2
1 1 1

ˆ ˆ ˆ ,S S S   

11 12 22
2 2 2 2

ˆ ˆ ˆ( ...)S S S S    , 

111 112 122 222
3 3 3 3 3

ˆ ˆ ˆ ˆ ˆ( ...) ( ...)S S S S S      , 

1111 2111 2211 2221 2222
4 4 4 4 4 4

ˆ ˆ ˆ ˆ ˆ ˆ( ...) ( ...) ( ...)S S S S S S        , 

 11111 21111 22111 22211 22221 22222
5 5 5 5 5 5 5

ˆ ˆ ˆ ˆ ˆ ˆ ˆ( ...) ( ...) ( ...) ( ...)S S S S S S S          . 

(16) 
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Here the contribution 
��
2...21...1

n m

n mS   contains the product of the operators 1Û , 2Û  in the order 

2 2 1 1
ˆ ˆ ˆ ˆ... ...

n m

U U U U

��������

. The three points in (16) denote the contributions that can be obtained 

from 
��
1...12...2

n m

n mS   with all the permutations of the operators 1Û , 2Û . 

The total number of creation and annihilation operators ap , ap  in an operator Â , 

which is the product of operators ap , ap  with different moments, is denoted by ˆ( )A . 

From (6) and (12) it is clear that 

��
2...21...1( ) 2 3

n m

n mS n m   ,  
��
2...21...1 /2

0~

n m

n m
n mS n 
 . (17) 

When calculating averages in (14), it is useful to take into account the formulas 

1
ˆ[ , ]N a a p p ,  1

ˆ[ , ]N a a p p   

which give 

1
ˆ ˆ ˆˆ[ , ] ( )N A As A  (18) 

where Â  is an arbitrary product of creation and annihilation operators ap , ap ; ˆ( )s A  is  

the difference of the quantities of the operators ap  and ap  in Â . The relation (18) shows 

that the operators 0Ĥ  (12) and 0w  (13) commute with the operator 1N̂  

0 1
ˆ ˆ[ , ] 0N H , 0 1

ˆ[ , ] 0w N  . (19) 

Hence a number of selection rules for calculating the averages with the statistical operator 

0w  follow; they are the consequence of the identity 

0 1 0 1 0
ˆ ˆ ˆ ˆˆ ˆ0 Sp[ , ] Sp [ , ] ( )Spw N A w N A s A w A  ɶ ɶ ɶ ,  

i.e. 

0
ˆSp 0w A ɶ   at  ˆ( ) 0s A  . (20) 

It is clear that for an operator Â  with an odd total number ˆ( )A  of creation and 

annihilation operators the value ˆ( ) 0s A   and its average value is zero: 0
ˆSp 0w A ɶ . 

Therefore, it follows from (17) that in (16) 

��2 1

2...21...1
0 (2 1)Sp 0

n m

n mw S



  ɶ ,  
��2

2...21...1
0 2 0Sp ~

n m

n m
n mw S n 


ɶ . (21) 

Given this, we have 

0 1 2
ˆ ˆSp ( ...)w S S    

2 11 22 112 1111 1122 2222 11112
0 1 2 2 3 4 4 4 5

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆSp [ ( ...) ( ...) ( ...)w S S S S S S S S               
11222 111111 111122 112222 222222 1122222
5 6 6 6 6 7

ˆ ˆ ˆ ˆ ˆ ˆ( ...) ( ...) ( ...) ( ...)S S S S S S            
1111222 1111112 22222222 11222222 11112222
7 7 8 8 8

ˆ ˆ ˆ ˆ ˆ( ...) ( ...) ( ...) ( ...)S S S S S           
11111122 11111111
8 8

ˆ ˆ( ...) ] ...S S     

(22) 
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where in each of the terms there is an even number of units and all terms have the integer 

power of 0n . Taking into account the dependence of all terms here on 0n  given by (21), 

we have such an expansion in powers of 0n  for the average included in (14) 

7
0 1 2 1 2 3 4 5 6 0

ˆ ˆSp ( ...) ( )a w S S a a a a a a O n         ɶ , 0~ s
sa n  (23) 

where 

2 11
1 0 1 2

ˆ ˆSp [ ]a w S S ɶ , 22 112 1111
2 0 2 3 4

ˆ ˆ ˆSp [ ( ...) ]a w S S S   ɶ , 

1122 11112 111111
3 0 4 5 6

ˆ ˆ ˆSp [( ...) ( ...) ]a w S S S    ɶ , 

2222 11222 111122 1111112 11111111
4 0 4 5 6 7 8

ˆ ˆ ˆ ˆ ˆSp [ ( ...) ( ...) ( ...) ]a w S S S S S       ɶ , 

22222 112222 1111222 11111122
5 0 5 6 7 8

ˆ ˆ ˆ ˆSp [ ( ...) ( ...) ( ...)a w S S S S       ɶ  

 111111112 1111111111
9 10

ˆ ˆ( ...) ]S S   , 

222222 1122222 11112222 111111222
6 0 6 7 8 9

ˆ ˆ ˆ ˆSp [ ( ...) ( ...) ( ...)a w S S S S       ɶ  

             1111111122 11111111112 111111111111
10 11 12

ˆ ˆ ˆ( ...) ( ...) ]S S S     . 

(24) 

Contributions of the sixth order are left in (23) and (24) for illustration and because such 

contributions are considered in generalizations of the Landau theory of phase transitions 

[14] (the standard theory is limited by contributions of the fourth order inclusive). 

Thus, from formulas (14) and (23) it follows 

5
0 1 2 3 4 0ln[1 ( )]F F a a a a O n           

2 2
1 2 3 4 1 2 1 2 1 2

1
( ) ( 2 2 )

2
a a a a a a a a a a          

3 2 4 5
1 1 2 1 0

1 1
( 3 ) ( )

3 4
a a a a O n     

(25) 

because 
2 3 4

5ln(1 ) ( )
2 3 4

x x x
x x O x      .  

As a result, taking into account (12), we obtain the expansion of the TD potential 

0( )n  in powers of 0n  

2 3 4 5
0 0 1 0 2 0 3 0 4 0 0( ) ( )n b n b n b n b n O n        (26) 

where the coefficients sb  are expressed in terms of coefficients sa  by formulas 

 1 0 1 0/b n a n   ,  2 2 20
2 0 2 1 0

1
( ) /

2 2
b n a a n


   

V
, 

 3 3
3 0 3 1 2 1

1
( ) /

3
b n a a a a     , 

 4 2 2 4
4 0 4 2 1 3 1 2 1

1 1
( ) /

2 4
b n a a a a a a a        

(27) 

( 0 0( 0)n   ). Thus, the nonequilibrium TD potential 0( )n  is expanded in a series 

with integer powers of occupation number of the condensate state 0n . 
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Formulas (24), (27) are valid for an arbitrary Bose system. Let's take a closer look at 

the case of Bose gas in the presence of condensate. To do this, you can use the usual 

perturbation theory, expanding the coefficients 1a , 2a , 3a , 4a  into a series of 

interactions ( ) ~ p  (λ<<1 is a dimensionless small parameter). Note, that the 

developed by Bogolyubov perturbation theory for the study of Bose gas in the presence of 

condensate [15] considers the case when the occupation number of the condensate state 

0n  is large and 1
0 / ~n V . In our case 0

0 / ~n V  and according to (15) and (16) 

��
2...21...1 ~

n m

n m
n mS 
  . Therefore, formula (24) shows that estimates 

1 ~a  ,  2
2 ~a  , 4

3 ~a  , 4
4 ~a   (28) 

are true. 

We restrict ourselves to the calculation of coefficients 1a , 2a  in the main order of 

the perturbation theory in  . The next coefficients require the use of the 4th order 

contributions of the TD perturbation theory, which is quite troublesome and will be made 

elsewhere. Formulas (24) give 

2 2 (0) 2(1) 2
1 0 0 1 0 1

ˆ ˆSp ( ) Sp ( )a n w S O w S O     ɶ ɶ , 

2 22 3 (0) 22(2) 3
2 0 0 2 0 2

ˆ ˆSp ( ) Sp ( )a n w S O w S O     ɶ ɶ  
(29) 

where in accordance with (12), (13), and (15) the leading contributions to the quantities 

0w , 2
1Ŝ , 22

2Ŝ  have the form 

 (0)
0 1

ˆ ˆ
(0)
0

F H N
w e

  
 ; 

2(1)
1 1 2 1

0

ˆ ˆ ( )S d U



    , 
1

22(2)
2 1 2 2 1 2 2

0 0

ˆ ˆ ˆ( ) ( )S d d U U



       
(30) 

where 

0 1 0 1
ˆ ˆ ˆ ˆ( ) ( )

2 2
ˆ ˆ( ) H N H NU e U e     . (31) 

(here and thereafter ( )sa  is contribution ~ s  to an arbitrary quantity a ). The definitions 

(1) and (6) give 

0 1 0 1
ˆ ˆ ˆ ˆ ( )( ) ( )H N H Ne a e a e

       p

p p , 0 1 0 1
ˆ ˆ ˆ ˆ ( )( ) ( )H N H Ne a e a e

       p

p p   

and therefore, taking into account (6) and (12), we have 

2 ( ) 2 ( )0 0
2 0

ˆ ( ) ( ( ) ) ( )[ ]
2

n n
U a a a a e a a e

        
          p p

p p p p p p

p p

p p
V V

 (32) 

The averages with the statistical operator (0)
0w  is calculated using the 

Wick‒Bloch‒Dominicis theorem (see, for example, [9, 13]) with elementary contractions 

a a n
  p p p pp

�				

,     (1 )a a n

   p p p pp

�				

 0a a  p p
�				
 , 0a a 

 p p

�				

; 

1
( )

1n e
     

p

p . 
(33) 

The calculations on this basis give in the leading order in interaction 
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 (1) 0
1 0( ( ) )

n
a n


     p

p

p
V

, 

 

2
2 2 2 2

(2) 20 0
2 0 02 2

( ( ) ) ( ( ) ) (1 )
2 2

n n
a n n n

  
          

  
 p p p

p p

p p
V V

 

  

2 ( )2
2 20

2 2

1
( )

2( )2 4( )

n e
n

    
   

    


p

p

p pp

p
V

. 

(34) 

Hence, taking into account (27), we have the final expressions for the first coefficients of 

the expansion (26) of the nonequilibrium TD potential 0( )n  in the powers of 0n  

 (1)
1 0

1
( ( ) )b n     p

p

p
V

, 

 (2) 2 0
2 02

( ( ) ) (1 )
22

b n n


        p p

p

p
VV

 

    

2 ( )

2 2

2

1 1
( ) 1 / 2( )

2 ( )2

e
n

   
     

    


p

p p

p p

p
V

. 

(35) 

Let us make some remarks regarding the connection of this result with the Landau 

theory of phase transitions of the second kind. We have found that the expansion (26) of 

the potential occurs in integer powers of the order parameter 0n . This corresponds to 

Landau's basic idea of the structure of the nonequilibrium TD potential [2, 3]. The 

violation of the effective Hamiltonian 0
ˆ ( )H n  symmetry with respect to phase 

transformations ia a ep p
 , ia a e  p p

  (see (5)) is the reason for the presence of 

odd powers of the occupation number in the expansion (26), that does not contradict to 

the Landau theory. In the standard approximation of the Landau theory, the condition of 

the potential 0( )n  minimum in equilibrium, according to (26), has the form 

2 3
1 2 0 3 0 4 0 0o o ob b n b n b n    ,  2

2 3 0 4 02 3 0o ob b n b n   . (36) 

In the absence of condensate 0 0on  , i.e. the relations 

1( , ) 0b T   ,  2 ( , ) 0b T     at 0T T  (37) 

must be true ( 0T  is the condensation temperature). There is no reason to believe that 

conditions (37) are fulfilled for the functions (35), which give the main contribution to 1b  

and 2b  in the small interaction approximation. 

Thus, the resulting expression (26) with (35) can not serve as the basis for 

describing the Bose condensation in the vicinity of the transition point. One can give 

some comments that explain the situation. The occupation number of the non-condensate 

states np  in (33) and further must be positive, therefore, the chemical potential   must be 

negative 

0 0n    p . (38) 
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In this case, after the TD boundary transition, the integral in (35) has no singularity and 

converges. Further, in the literature there is an opinion on the inapplicability of chemical 

potential as an independent variable in the Bose condensation theory (see, for example, 

[9, 12]). Moreover, in the literature, the applicability of the Gibbs grand canonical 
distribution to the study of Bose condensation is considered controversial (see a review in 

[11]). Our investigation of the Bose system will be continued elsewhere. 

For a more detailed consideration of the connection of the developed theory with the 

Landau theory, one should calculate the coefficients 3b , 4b  in expansion (26) of the TD 

potential 0( )n  in the TD perturbation theory. In accordance with (24), this requires 

considering the contributions of the 4th order of the TD perturbation theory. This will be 

done in another work, but note that the calculation of the coefficients 3b , 4b  can be 

optimized. For this, the contribution of the perturbation theory ˆ
nS  in (15) should be used 

in the form 

1 1

0 0

( 1)ˆ ˆ ˆ... { ( )... ( )}
!

n

n n nS d d T
n

 
      U U  (39) 

where the operator {...}T  of the ordering of products on the inverse temperature   was 

introduced. Since operators are commutative under the sign of this operator, all terms 

indicated in (24) with three dots give the contribution equal to the contribution of the first 

term in the corresponding bracket. 

Next, it is expedient to use the standard technique of TD theory of perturbation 
using T - contractions [13]. It should also be taken into account that formula (14) allows 

further simplification 

0 0 1 2
ˆ ˆSp (S +S +...)cF F w    ɶ  (40) 

where the trace Spc
ɶ  is taken only over conjuncted contraction systems. Even when using 

such considerations, the calculation of the coefficients 3b , 4b  is rather troublesome, since 

it requires taking into account the contributions of the 4
th
 order of the TD perturbation 

theory. 

4. Conclusion 

The nonequilibrium TD potential of the Bose system 0( )n  is calculated in the 

presence of the condensate near the phase transition point, when the occupation number 

of the condensate state 0n  is small. With the help of the TD perturbation theory the 

calculation of contributions up to the order 6
0n  inclusive is conducted, that is enough to 

analyze the generalizations of the Landau theory of phase transitions of the second kind 

[14]. The calculation of the proportional to 3
0n  and 4

0n  contributions to 0( )n , that are 

discussed in the standard Landau theory, requires considering the terms of the 4
th
 order of 

the TD perturbation theory and will be discussed elsewhere. Coefficients at contributions 

to 0( )n  of the orders 1
0n  and 2

0n  are calculated for a Bose gas in the leading order of the 

small interaction approximation. It is established that the results obtained for Bose gas do 

not fit into the Landau theory of phase transitions of the second kind. In this regard it is 

noted that the literature suggests the inapplicability of the chemical potential as an 

independent TD variable and of the Gibbs grand canonical distribution for the 

consideration of the Bose condensation in general (see [9, 12] and review [11]). 
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