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On the basis of the Landau kinetic equation a generalized Lorentz model is proposed, which contrary 

to the standard model, considers ion system as an equilibrium one. For electron system kinetic equation of 

the Fokker-Planck type is obtained. In the Bogolyubov method of the reduced description, which is based 

on his idea of the functional hypothesis, basic equations for electron hydrodynamics construction with 

account for temperature and macroscopic velocity relaxation processes (kinetic modes of the system) is 

elaborated. The obtained equations are analyzed near the end of the relaxation processes when the theory 

has an additional small parameter. The main in small gradients approximation is studied in details, it 

corresponds to the description of relaxation processes in a spatially uniform case. The obtained equations 

are approximately solved by the method of truncated expansion in the Sonine polynomials. The velocity and 

temperature relaxation coefficients are discussed in one- and two-polynomial approximation. As a result 

the relaxation coefficients are calculated in one-polynomial approximation. 
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1. Introduction 

Investigation of nonequilibrium processes in a system with account of relaxation 
processes is an actual modern problem of kinetic theory (see [1, 2] and also a review [3]).  

Relaxation processes in the narrow sense of the word mean processes that can be observed in 

spatially uniform states of a system too. In the vicinity of the equilibrium these processes are 

described by kinetic modes of the system. The problem of their investigation is that the 

theory has not a small parameter, which could help to investigate these processes. The most 

important problem of such type is the description of states that precede in time to states in 

which relaxation processes already have finished. In fact, we are talking about the formation 

of well-studied nonequilibrium states in the process of evolution. In particular, in a many-

component system, for example in plasma, we speak about the processes of alignment of 
macroscopic velocities and temperature of the components. The pioneering study of such 

processes was carried out by Landau [4] on the basis of the idea that the local equilibrium 

state is quickly established in the components of the system (see also the known paper [5]). 

Another important class of tasks is the problem of dissipative flow formation in 

hydrodynamics. The pioneering study of such processes was performed by Grad [6] on the 

basis of using nonequilibrium distribution functions which are taken in the form of truncated 

expansion in the Hermite orthogonal polynomials. A certain step forward in the study of 

relaxation processes was our idea of investigating them in the vicinity of the completion of 

these processes with introducing a new small parameter in the theory (see review [3]). This 

method has been used in a number of papers for the study of completely ionized plasma [7], 
subsystems of polarons and phonons of solids [8]. 

The complexity of such systems is a certain obstacle in this research. That is why in this 

paper we deal with introducing a generalization of the Lorentz model (see, for example, [9]) 
and advancing the research into the role of relaxation processes in spatially non-uniform 

plasma in the framework of this model. 

The work is structured as follows. Section 2 formulates a generalized Lorentz model. In 

Section 3 based on the Bogolyubov reduced description method (see review [5]) the basic 

equations of  hydrodynamics of  the electron subsystem of  plasma are formulated with taking  
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into account relaxation processes. In Section 4 a perturbation theory is developed to study 

the spatially uniform states of the system at the end of the relaxation processes. In Section 

5 we are talking about an approximate solution of the integral equations of the theory by 

the method of the truncated expansion in Sonine polynomials. In Section 6 the 
coefficients of electron temperature and velocity relaxation are calculated. 

2. Generalized Lorentz model 

Completely ionized electron-ion plasma is investigated. The Landau kinetic equation 

in the presence of a constant homogeneous external electric field 
nE  lies in the basis of 

our consideration  
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Its collision integral is given by the formula (see, for example, [4, 10]) 
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where 
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and L  is a constant which is called the Coulomb logarithm. Indices ,a b  run 

meanings ,e i  indicating electron and ion components; ee e  , ie ez  ( 0e  , z  is the 

charge number of the ion). The component distribution function f ( , )ap x t  is normalized 

by the condition 
3 f ( , ) ( , )ap ad p x t n x t  (4) 

where ( , )an x t  are densities of number of particles of components.  

Further we will assume that ions form an equilibrium system in a state of rest with 

temperature 0T  
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( 0n  is ion density, M is an ion mass). The ion-ion and electron-electron interaction are 

neglected, that is, we introduce a generalized Lorentz model. Electron distribution 

function is denoted here by f ( , )p x t . The kinetic equation for this function takes the form 
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where the ion-electron collision integral is given by the formula 
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( m  is electron mass). Let us introduce the notation 
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and take into account that 
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Then collision integral (7) can be written in the form 
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where we denote 
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We obtain a kinetic equation of the Fokker–Planck type. According to standard terms, 

quantities ( )nlD p , ( )nA p  are called the diffusion coefficient in the momentum space and 

the friction force (see about this class of equations, for example, in [9, 10]). 

Note that in equilibrium the distribution function of electrons f p  is given by the 

Maxwell distribution 
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because according to (7) the formula 

( ) 0pI w   (12) 

is true as a consequence of the identity ( ) 0l nlu S u  . In terms of the notation (9) it means 

that 

0
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is true. So, finally the collision integral (9) takes the form 
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The function ( )nlD p  defined in (8) has a fairly simple structure, which simplifies 

our further research. In particular, it has a simple dependence on dimensional quantities. 

This allows us to find out the structure of dependence on the dimensional values of all 

objects of the theory. 

3. Basic equations of the reduced description method for electron hydrodynamics 

Let us construct the basic equations of hydrodynamics in the presence of relaxation 

processes of the component temperature and velocity equalizing in the generalized 

Lorentz model. We proceed from the mass, energy, and momentum conservation laws, 

which, in accordance with the kinetic equation (6), (14), take the form 
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(15) 
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where mass ( , )x t , momentum ( , )l x t  and energy ( , )x t  densities according to (4) are 

defined by the formulas 

3( , ) f ( , )px t m d p x t   ,  3( , ) f ( , )l l px t d pp x t   , 

3( , ) f ( , )p px t d p x t     ( 2 / 2p p m  ) 
(16) 

(along with the mass density it is convenient to use the density of the number of particles 

/n m  ). Energy ( ,f )nq x  and momentum ( , f)nlt x  flux densities and sources 0 ( , f )R x  

and ( ,f )lR x  are given by the expressions 
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Electron component temperature ( , )T x t  and velocity ( , )nu x t  are the basic hydrodynamic 

parameters and defined by usual formulas 
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because electron-electron interaction is neglected. They are based on the local 

equilibrium idea according to which 
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where the Maxwell distribution pw  defined by (11) is used. 

Equations (15) give the equations of hydrodynamics if we express their right-hand 

sides via independent variables (parameters of the reduced description)  
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which describe a state of the system in hydrodynamics. This can be done through placing 

the Bogolyubov idea of the functional hypothesis 

0
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in the basis of consideration. According to this idea the distribution function f ( , )p x t  

becomes a functional f ( , )p x   of variables ( )x  at the times much greater than a certain 

characteristic time 
0 . This relation is the basis of the Bogolyubov formulation of the 

Chapman–Enskog method, which is a special case of his method of reduced description. 

In accordance with (16) and (18) the reduced description parameters are expressed in 

terms of some moments of the distribution function. Since the distribution function is 

determined by all moments, such a description is a reduced one. 

In the system under consideration the electron component temperature and velocity 
relaxation is observed 
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where T  and u  are corresponding relaxation times,   is electron mobility. The time 0  

in the functional hypothesis (21) is assumed to fulfill the condition 0 ,T u  ≪ , hence the 

relaxation processes in the situation under consideration are still taking place. This does 
not fit into the standard Chapman–Enskog method, in which the only small parameter is 
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the parameter of the smallness g of the gradients of the reduced description parameters 

that is introduced by the estimates 

1
( ) / ... ~

s

s s
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Here fpl  is the mean free path, L  is the characteristic size of the non-homogeneity of the 

electron distribution in space. Zero approximation in the gradients (0)f p  for the 

distribution function f ( , )p x   describes relaxation in a spatially uniform case. The 

distribution function (0)f p  satisfies the integral equation, whose solution cannot be found 

in the standard Chapman–Enskog method. In our work a new small parameter   that 

allows us to calculate the distribution function (0)f p  is introduced. 

As a result, the equations of hydrodynamics can be written in the form 

( , )
( ,f ( ( )))

x t
L x t

t





 


 (24) 

where ( ,f )L x  is a functional of f ( )p x . In accordance with (15) and (18), the exact form 

of these equations is given by the formulas 
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For the distribution function at the reduced description f ( , )p x   the equation 
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is obtained from the kinetic equation (6) with taking into account the functional 

hypothesis (22). Definitions (16) and (18) of the parameters of the reduced description 

( )x  give additional conditions for this equation 
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To construct the equations of hydrodynamics, it is necessary to solve equation (26) with 

the relations (27) in perturbation theory in gradients based on the estimations (23). 

4. Construction of the perturbation theory for solving 

the equations of the theory 

The basis of this work is the idea of studying hydrodynamics taking into account the 

relaxation phenomena near their completion, when the quantities 0( , )T x t T  and 

( , ) ( )n nu x t E x  in accordance with (23) are small 

0( , ) ( , ) ~x t T x t T    ,  ( , ) ( ) ~n nu x t E x   (28) 

where   is a small parameter  introduced formally. To simplify the consideration, we will 

assume that the electric field is weak. Therefore, according to (23) and (28) the estimates  
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( , )lu x t ∼ , ( , )x t ∼ , lE ∼ ;  0g ∼ ,  
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are true. The solution of equation (26), with taking into account (27), is sought in the 

form of a double series in the gradients of parameters ( )x  and the small parameter   
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where a quantity ( , )f ~m n m n
p g  . Similarly the contributions of the perturbation theory to 

flows, sources, and collision integral ( , f )lq x , ( ,f )lmt x , 0 ( ,f )R x , ( ,f )lR x , ( , f )pI x  are 

denoted. In this paper we restrict ourselves to considering the basic (zero) approximation 

in gradients, which describes the evolution of a spatially uniform system, that is, only the 

relaxation phenomena in the narrow sense. The results of the previous section allow us to 

construct a theory of relaxation processes in a spatially non-uniform case (in other words, 

hydrodynamics taking into account relaxation processes), it will be done in another work. 

Distribution of the gradient-zero approximation (0)f p , in accordance with (25) and 

(26), satisfies the nonlinear differential equation 
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with additional conditions 
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It was noted above that methods for solving such nonlinear equations were not developed. 

In this work it is proposed to investigate them near the end of the relaxation, when one 

can use the perturbation theory in parameter  . The contributions of the order 0  to (31) 
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(33) 

According to (12), the collision integral (f )pI  with the Maxwell distribution pw  defined 

in (11) equals to zero. The definition of sources in the conservation laws (17) shows that 

they with pw  also equal to zero 

0 ( ) 0R w  ,  ( ) 0lR w  . (34) 

On this basis it is established that the solution of equations (33) is given by the Maxwell 

distribution pw from (11) 



Relaxation processes in completely ionized plasma in generalized Lorentz model 

 23

(0,0)f p pw . (35) 

Simultaneously from formulas (20) we find the flows 
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In the first order in the parameter   from equations (31) and (32) taking into 

account (12) and (35) we obtain 
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For reasons of rotational invariance the solution of these equations has the structure 
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for the quantities pA , pB , pC  with additional conditions to them 
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Hereafter for an arbitrary quantity pa  we denote 
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For further it is convenient to use the operator K̂  
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With the help of the operator K̂  one can introduce the bilinear form (brackets) 
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   , (44) 

which has important properties 

 { , } { , }p p p pa b b a , { , } 0p pa a  ,      { , } 0pa c   (45) 

( pa , pb  are arbitrary functions, c  is an arbitrary constant). 

Sources (17) in the conservation laws (15) are expressed in terms of this form by 

relations 
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0( ) { , }p pR wa a   , ( ) { , }l l pR wa p a  . (46) 

Herewith the coefficients u , T , and   according to (42) are given by the formulas 

1
{ , }

3
u n p np A p 


,    

2
{ , }

3
T p pB

n
   ,    

1
{ , }

3
l p l

e
p C p

m
  


. (47) 

The meaning of these coefficients is understood from the time equations for the reduced 

description parameters (28), which in the order 0 1g   of the perturbation theory, with 

taking into account (38) and (46), give 

(0,1)

0
t

    
,     

(0,1)

l
u l l

u
u E

t

       
,  

(0,1)

T

T

t

      
. (48) 

Hereafter we call u  and T  the relaxation coefficients. From formulas (45) and 

identities 

 2 2 { , }u p p l p lA p A p A p    ,  2 { , }T p p pB B B    , (49) 

which follow from equations (38) and definition (44), it is clear that these coefficients are 

positive. They describe the relaxation (22) with characteristic times 

1
u u

   , 1
T T

   . (50) 

Note that the relations (47) do not make the equations (39) nonlinear. Formulas (47) 

are the consequences of equations (39). Functions p lA p  and pB  are the operator K̂  

eigenfunctions, which correspond to their eigenvalues u  and T . In this sense 

eigenvalues are functions of their eigenfunctions. 

Note that the operator K̂  is a Hermitian one when the scalar product is defined by 

the formula 
3 *( , )p p p p pa b d pw a b  . (51) 

This is evident from the transformations 

 *3 * * * * * 3 *ˆ ˆ ˆ( , ) { , } { , } { , }p p p p p p p p p p p p p pa Kb d pw a Kb a b b a b a d pw b Ka        

*ˆ ˆ( , ) ( , )p p p pb Ka Ka b  , 

(52) 

which take into account relations (44) and (45). This property of the operator K̂ can be 

used in the analysis of approximate methods for solving equations (39). 

5. Method of the truncated expansion in the Sonine polynomials for calculating 

the theory objects in spatially uniform state 

At approximate solution of equations (39) by an expansion in orthogonal 

polynomials it is expedient to use the Sonine polynomials ( )qS x  ( 0,1,2,...q  ,   is a 

real number), which are defined by conditions 

0

( 1)
( ) ( )

!

x
q q qq

q
dx x e S x S x

q


   

 
  

   ,     
0

( ) s
q s

s q

S x a x

 

  ,    ( 1)q
qa    (53) 

(see, for example, [9, 11]). This in particular gives 

0 ( ) 1S x  ,    1 ( ) 1S x x     ,    2
2 ( ) { 2(2 ) (2 )(1 )} / 2S x x x         . (54) 
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The condition of orthonormalization (53) can be written in the form of the average (40) 

with the Maxwell distribution 

1/2

1/2 1/2

2 ( 1)
( ) ( )

!
p q p q p qq

n q
S S

q

  
 

  
     

 
  ( 1

0T   ), (55) 

which indicates the expediency of using Sonine polynomials. 

Let us find the functions pA , pB , and pC  in the form of expansions 

3/2

0

( )p q q p

q

A a S




  , 1/2

0

( )p q q p

q

B b S




  , 3/2

0

( )p q q p

q

C c S




  , (56) 

for which the orthonortmalization conditions take the form  

 2 3/2 3/2( ) ( )q p q p q qqp S S x       , 
1/2

4 ( 5 / 2)

!
q

mn q
x

q

 


 
, 

 1/2 1/2( ) ( )q p q p q qqS S y       ,  
1/2

( 3 / 2)
2

!
q

q
y n

q

 



. 

(57) 

Herewith the additional conditions (39) get a simple form 

0a   ,    0 0b  ,    1b   ,    0 0c  . (58) 

The equations for the coefficients qa  and qb  will be found as it follows. We substitute the 

expansions (56) into equations (39), multiply them by 3/2( )l q pp S   and 1/2( )q pS  , 

correspondingly, take the average value with the distribution function pw  in the both 

sides and take into account (57). As a result we have 

0

qq q u q q

q

A a a x


 


  ,    
0

qq q T q q

q

B b b y


 


  ,    1/2
,0

0

3qq q q q q

q

A c a x en


 


    , (59) 

where the notations 

 3/2 3/2{ ( ), ( )}qq l q p l q pA p S p S    , 1/2 1/2{ ( ), ( )}qq q p q pB S S    . (60) 

are introduced. The first two equations (59) can also be written in the form 

1/2 1/2

0

qq q q u q q

q

A a x a x


  


  , 1/2 1/2

0

qq q q T q q

q

B b y b y


  


   (61) 

where 
1/2( )qq qq q qA A x x   , 1/2( )qq qq q qB B y y   . (62) 

Equations (59) in the form (61) are the equations for the eigenvectors 1/2
q qa x  and 1/2

q qb y  

and the corresponding eigenvalues u  and T . Eigenvalues u  and T  formally are 

solutions of equations 

det || || 0qq u qqA     ,  det || || 0qq T qqB     . (63) 

These equations have an infinite set of solutions, from which the minimum ones have to 
be chosen. Such solutions describe the slowest relaxation process. 

Additional conditions (39) give the contribution (58) of the first polynomials to 

expansion (56). We will say that the solutions of equations (59) are calculated in the s -

polynomial approximation if all the coefficients of the expansion (56) starting from 
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( 1s  )-th are assumed to be zero. For example, equations (59) and their solutions in the 

approximation of s  polynomials have the form 

1
[ ] [ ] [ ]

0

s
s s s

qq q u q q

q

A a a x


 


   ( 0,..., 1q s  );     
1

[ ] [ ] 3/2

0

( )
s

s s
p q q p

q

A a S




  ,     [ ]
0
sa   ;  

[ ] [ ] [ ]

1

s
s s s

qq q T q q

q

B b b y 


     ( 1,...,q s );      [ ] [ ] 1/2

1

( )
s

s s
p n n p

n

B b S


  ,      [ ]
1

sb   . 

(64) 

Here as unknowns the quantities [ ]s
na  (1 1n s   ), [ ]s

u  and [ ]s
nb  ( 2 n s  ), [ ]s

T  should 

be considered. Further at quantities for simplicity we will omit an index s , which 

indicates the number of polynomials in the considered approximation. 

In the one-polynomial approximation the equations (59) give 

 00 0 0 0uA a a x  ,  0a   ,  3/2
0 0 ( )p pA a S  ; 

 11 1 1 1TB b b y  ,  1b   , 1/2
1 1 ( )p pB b S  ; 

 1/2
01 1 0 0 3A c a x en   , 11 1 1 1A c a x  , 3/2

1 1 ( )p pC c S  , 

(65) 

and therefore  

pA   ,     { , }
3

u l lp p
mn


  ;    1/2

1 ( )p pB S   ,    
22

{ , }
3

T p p
n


    ; 

0pC  ,    
e

m
  . 

(66) 

(the same expressions are given by formulas (47)). The coefficient 1c  in (65) should be 

assumed to be zero, since in the one-polynomial approximation one must take 1 0a  . 

In the two-polynomial approximation the formulas (59) give the following equations 

for the quantities u , 1a , T , 2b  and functions pA , pB  

 
00 0 01 1 0 0

10 0 11 1 1 1

,A a A a a x

A a A a a x





  


  
, 3/2 3/2

0 0 1 1( ) ( )p p pA a S a S    ,    0a   ;  

 
11 1 12 2 1 1

21 1 22 2 2 2

,B b B b b y

B b B b b y





  


  
, 1/2 1/2

1 1 2 2( ) ( )p p pB b S b S    ,   1b   . 

(67) 

The set of equations (67) gives such an expression for the smallest root u  of two ones 

and the expression for the coefficient 1a  

 2 1/2
0 11 1 00 0 11 1 00 0 1 11 00 01 10 0 1( ) [( ) 4 ( )] / 2u x A x A x A x A x x A A A A x x       , 

 1 0 00 01( ) /a x A A    
(68) 

Also it gives such an expression for the smallest root T  of two ones and the expression 

for the coefficient 2b  

 2 1/2
1 22 2 11 1 22 2 11 1 2 11 22 12 21 1 2( ) [( ) 4 ( )] / 2T y B y B y B y B y y B B B B y y         

 2 11 1 12( ) /Tb B y B     
(69) 

A detailed analysis of the two-polynomial approximation and the convergence of the 

method of the truncated expansion in the Sonine polynomials for the generalized Lorentz 

model will be carried out in another paper. 
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6. Calculation of the relaxation coefficients u , T in one-polynomial approximation 

In accordance with expression (66), the brackets needed to calculate the relaxation 

coefficients u  and T  in the one-polynomial approximation are  ,l lp p  and { , }p p  . 

Taking into account the definitions of the brackets (44), which include the function 

( )nlD p  from (8), one has 

  3 3
, 2

p p

p p p ip nl

n l

a bp p
a b d pd p w w S

m M p p


        . (70) 

Let us calculate a more general value, through which the brackets are expressed 

 
1 2

3 3 1 2
1 2 1 2f ,nl p ip nl

p p
I d p d p w w S p p

m M

 
  

  . (71) 

In order to do this, let us introduce in the integral the velocities that are used in the two 

body problem 

 1 1p m  , 2 2p M  ;      1 2
c

m M

m M






 
 ,      1 2    ,   

Given the well-known identities of this problem
3 3 3 3

1 2 cd d d d    , we have 

 
   

 
   

2 2

00
3 223 3 0

3/2 3/2

0 02 2

cm M mM

m M TT
nl c nl

nn
I mM d d e e S

T m T M




 
 

  
 

 

                                    1 2f ,m M   . 

 

Another substitution of variables 
1/2

0
c c

T
q

m M

 
   

 , 
  1/2

0m M T
q

mM

 
  
 

   

finally gives 

 
1/2

3 30

2 1/2 1/2
0

f ( , )
(1 ) cnl c q q nl c

nn m
I d q d qw w S q q q

T


 
  (72) 

where 

1/2 1/2
0 0

2 1/2 2 1/2

( ) ( ) 1
f ( , ) f ( ), ( )

(1 ) (1 )
c c c

mT mT
q q q q q q

 
       

;    

2

2
3/2

1

(2 )

q

qw e





. (73) 

In the problem of completely ionized plasma the magnitude 1/2( / )m M   is a small 

parameter, since the mass of an ion M is much larger than the electron mass m . 

Formulas (66) and relations (70)-(73) give the following expressions for the 

temperature and velocity relaxation coefficients in the one-polynomial approximation 
5/2 1/2

0

2 1/2 1/2 3/2
0

2

3(1 )
u

n

m T

 
 


, 

7/2 1/2 2 2
0

2 3/2 1/2 3/2 2
0

2 2

3(1 ) 1
T u

n

m T

   
   

 
 (74) 

In paper [7] these values were calculated in the main approximation in the parameter . 

At the same time our expression for u  matches the expression [7], but our expression for 

T  gives the expression of [7] after the replacement 0 0 ( 1)n n z  . This result is expected 

since in [7] the dynamics of ions was more fully taken into account, but the calculations 

could be carried out only with the additional assumption of   smallness. 

7. Conclusions 

In the paper based on the Landau’s kinetic equation for a completely ionized plasma 

a generalized Lorentz model, which considers the system of ions to be equilibrium one, is 
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developed. As a result, the plasma electron system is described by a Fokker-Planck 

kinetic equation. In the Bogolyubov reduced description method the basic equations for 

constructing the hydrodynamics of electrons are developed. They take into account the 

temperature and macroscopic velocity relaxation processes. The equations of the theory 

are analyzed at the end of the relaxation processes with restricting ourselves by 

considering the basic in the gradients approximation, which corresponds to the 

description of relaxation processes in a spatially homogeneous case. The resulting 

equations are solved approximately by the method of the truncated expansion in the 

Sonine polynomials, limiting the consideration by one- and two-polynomial 

approximation. Finally the coefficients of relaxation of temperature and electron velocity 

are calculated in the one-polynomial approximation. 
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