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Applying the integral equation method of overlapping partial domains and the Schwartz alternating 

method to solving an electromagnetic wave diffraction problem is considered in this paper. The infinite 

rectangular waveguide phased array antenna scanning in H plane which waveguides have step matching 

discontinuities is represented. The whole field definition domain is sliced into three overlapping partial 

domains. The system of integral representations for unknown Ey components of the electrical field vector in 

each domain is set up using Greenʼs functions. Unknown functions in each domain are presented as 

orthogonal eigenfunction series. Using Galerkinʼs procedure, the system of integral representations is 

reduced to the system of linear equations for unknown expansion coefficients. For Schwartz method the 

system of integral representation is solved using iterative methods. The dependences of the reflection 

coefficient magnitude and phase on the value of scan angle are obtained. The comparison of obtained 

results for particular cases with known ones is performed. 
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1. Introduction 

Waveguide structures with step discontinuities play a significant role in designing 

microwave transformers, filters, and couplers. One of the effective approaches for treating 

diffraction problems in waveguide structures is the mode matching technique (MMT). In 
paper [1] an analysis for computing the transmission characteristics of a cascaded H-plane 

discontinuity in a rectangular waveguide is presented. An optimum double-plane three-step 

transformer for a P- to X-band waveguide is designed in [2]. 
In papers [3, 4] the Finite Element Method (FEM) to determine reflection and 

transmission coefficients of rectangular waveguide junction discontinuities is presented.  

The integral equation method is also widely used for solving diffraction problems in 

waveguides [6-9]. The paper [6] is devoted to the analysis of electromagnetic wave 

diffraction on waveguide phased array antennas (PAA) using both integral equation and 

mode matching method. The Schwartz alternating method is applied to solve diffraction 

problems in papers [7, 8]. The method consists of dividing a whole field definition domain 

into simple overlapping partial domains, whose Green’s functions are known. Through the 

use of Green’s functions, the initial problem is reduced to a Fredholm integral equation of 
second kind that is solved by iteration method. According to overlapping partial domain 

method [9] the resulting integral equations are solved with the Galerkin’s method. 

In the present paper a novel approach within the overlapping partial domain method for 
solving electromagnetic wave diffraction problems on waveguide step discontinuities is 

proposed. A problem for matching steps in apertures of waveguide PAA is considered. In 

order to obtain the problem solution, a system of integral equations is reduced to a system of 

linear equations for unknown expansion coefficients. 

2. Formulation of the problem 

In order to consider the main features of the proposed approach, we solve a problem in 

which a three-dimensional vector Helmholtz equation is reduced to two-dimensional scalar 

one. We consider the infinite phased array antenna constituted by rectangular waveguides, 

whose apertures have matching steps. Since the  field in  radiation region has periodic character, 
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one can take into account a unit PAA cell located at the origin. The PAA waveguides are 

excited by an incident wave of type H10. As shown in [6], if beam scanning is performed in H 

plane and waveguide walls, that are normal to the electrical field vector, have infinitesimal 

thickness, only an Ey component of electrical field satisfying the two-dimensional Helmholtz 
equation has to be found.  

According to the procedure described in [10], we divide the whole field definition 

domain of the selected PAA cell into three overlapping partial domains (Fig. 1). 

 

Fig.1. Unit cell of infinite parallel plate phased antenna array. 

Domain I: −a/2 ≤ x ≤ a/2, −∞ ≤ z ≤ ∞. Domain II: −c/2 ≤ x ≤ c/2, l ≤ z ≤ ∞. Domain III: 

−b/2 ≤ x ≤ b/2, 0 ≤ z ≤ ∞. The H10 wave is excited in domain I at z → −∞. Suppose that the 

Greenʼs functions of domains I, II and III are known. Then, we can set up a system of integral 

equations of fields for each domain using the Green’s second identity: 
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 (1) 

Here: x and z are coordinates of the observation point, x' and z' are coordinates of the 

source point, GI, GII, GIII are the Green’s functions of domains I, II, and III, n
�

 denotes an 

outward unit normal vector to a partial domain boundary surface, a prime symbol denotes 

that the differentiation is performed at source points. Green’s functions are represented in a 

sourcewize form [11]: 
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Here:  ,I II x  are normalized orthogonal waveguide eigenfunctions of a corresponding 

domain described in [7]. Index μ denotes number of waveguide mode, for the domain I μ=q, 

for domain II μ=p, α is waveguide width, for domain I α=a, for domain II α=c. The Green’s 

functions for domain I and II depending on longitudinal coordinates have the form: 

   1
, exp .

2

I I
q qI

q

f z z j z z
j

    


 (3) 

 
     
     

exp sh ,1
, .

exp sh ,

II II
p p

II
p II II II

p p p

j z l j z l z z
f z z

j j z l j z l z z

         
       

 (4) 

Here: 

2 2

, 2I II j
              

 are longitudinal propagation coefficients. 

Because of periodic character of the PAA excitement the Green's function for domain III 

is represented as a series of “Floquet” harmonics [6]: 
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Here:  m x  are normalized orthogonal waveguide eigenfunctions of the domain III, 

symbol “*” denotes complex conjugation, 
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 are 

longitudinal propagation coefficients for domain III. Incident wave is an H10 – wave with unit 

magnitude: 
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As seen from (1) the field in one domain (except domain III) is defined by fields from 

two other domains. Thus, the system (1) cannot be reduced to a single integral equation for 

one unknown function. Obviously, one equation in system (1) can be eliminated by 

expressing it through other equations. However, this procedure is associated with a large 

number of analytical transformations, especially for three-dimensional problems.  
In order to obtain a solution for system (1) we use the following approach. We represent 

unknown functions for each domain as a series of orthogonal eigenfunctions with unknown 

expansion coefficients, which have physical meanings of transmission and reflection 
coefficients. Thus, unknown functions take the following form: 
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We substitute these representations into system (1) and fix coordinates of source and 

observation points. Wherein, field in domain II has to be found at two observation points with 

coordinates z=l and z=0. Then using a property of eigenfunctions orthogonality the system (1) 

is reduced to a system of linear equations for unknown expansion coefficients. The obtained 

system can be solved using any direct method after limiting the number of unknowns to a 

finite value. The modulus of reflection coefficient of an incident H10 wave is determined by 

value of the R
I
1 coefficient.  

Applying the Schwartz alternating method to described problem leads to a system of 

linear equations, which can be solved using iterative methods. However, direct applying of 

the Schwartz algorithm to the considered problem does not allow to obtain a convergent 

solution. Thus, it is necessary to take advantage of the optimal iteration method for Schwartz 

algorithm introduced in paper [7]. Thereby, system of linear equations for unknown 

expansion coefficients can be represented in the next matrix form: 

1 1 1
.

i i i i            X X α X X B  (8) 

Here: i is the order of iteration, X is row matrix with unknown coefficients and X<1>=B, 

B is row matrix of free terms of system of linear equations, α can be determined as α=I−A, 
where I is a square unit matrix and A is the main matrix of the system, β can be determined 

as 1/||A||. 

3. Numerical results 

According to the described algorithm, the numerical calculation of the reflection 

coefficients in PAA waveguides was performed. Fig. 2 depicts the dependence of the 
reflection coefficient magnitude (a) and phase (b) on the value of steering phase shift sin(θ) 

for PAA with waveguide dimensions b/λ=0.5714, a/b=0.937 for different values of c/b and 

l/λ ratios.  
 

 
 (a) (b) 

Fig. 2. The dependence of the reflection factor modulus (a) and phase (b) on the steering phase shift for 

PAA with b/λ=0.5714, a/b=0.937. 

Symbol * on curves describes results obtained using the Schwartz algorithm. The results 

were obtained for three different matching step dimensions. Dimension c/b=0.937 represents 

the case of matching step absence since the value of c is equal to a. A comparison of the 

obtained result for the case of matching step absence with known results from [6] shows the 
correctness of the described algorithm. 

Table 1 represents a convergence of the described method for different values of 

accounted modes M in domain III for PAA with dimensions b/λ=0.5714, a/b=0.937 c/b=0.96, 
and l/λ=0.5. The maximum value is limited by M=32 because further increasing of it affects 
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on result accuracy less than 10
-4

. The number of modes in domains I and II is defined as 

Q=2M+1. 
Table 1 

The results of the method convergence  

sin(θ) M=2 M=4 M=8 M=16 M=32 

0.0525      

0.175      

0.35      

0.525      

0.7 0.1619 0.1610 0.1618 0.1617 0.1609 

0.875 0.0405 0.0416 0.0407 0.0406 0.0413 

The investigation of the step discontinuity effect on the value of an incident wave 

reflection coefficient in PAA waveguides allowed finding the optimum dimensions of 

a matching discontinuity, which can provide a uniform dependence of a reflection 

coefficient magnitude on the steering phase shift. Fig. 3 depicts the dependence of the 

reflection coefficient magnitude (a) and phase (b) on the value of sin(θ) for PAA with 

waveguide dimensions b/λ=0.6724, a/b=0.88, and l/λ=0.3 for different values of c/b.  

 

 
Fig.3. The dependence of the reflection factor modulus (a) and phase (b) on the steering phase shift for 

PAA with b/λ=0.6724, a/b=0.88, l/λ=0.3. 

For comparison, dimensions of c/b=0.88 and l/λ=0 represent the case of matching step 
absence. The results show that introducing step notches in waveguide apertures can 

significantly improve a PAA matching in a wide range of scanning angles. 

4. Conclusions 

The approach within the overlapping partial domain method is considered in this paper. 

This approach allows solving diffraction problems in which a system of integral equations for 
unknown partial domain functions cannot be reduced to a single integral equation for one 

unknown function. 

In the proposed approach a system of integral equations is reduced to a system of linear 
equations for all unknown field functions in each partial domain. Wherein, unknown 

functions are presented as series of orthogonal eigenfunctions. The solution of this system 

allows to obtain transmission and reflection coefficients in each partial domain. Also, the 

proposed approach reduces significantly an amount of required analytical transformations 

before performing numerical calculations, especially for three-dimensional problems. 

Based on proposed approach the problem of electromagnetic wave diffraction on a 

waveguide PAA, whose waveguides have matching steps in its apertures, is solved in the 

paper. The dependences of reflection coefficient in unit cell of PAA on a steering phase shift 

were obtained for different sizes of matching step discontinuity. The second problem was a 
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three-dimensional case: wave diffraction on a cascaded rectangular waveguide junction. The 

effect of intermediate waveguide length on the character of reflection coefficient frequency 

dependence has been analyzed. 

References 

1. Christie, L. Mode matching method for the analysis of cascaded discontinuities in a 

rectangular waveguide / L. Christie, P. Mondal // Proceedings of the 6th International 
Conference on Advances in Computing and Communications. – 2016. –Vol. 93. – P. 251 – 

258. 

2. Patzelt, H. Double-plane step in rectangular waveguides and their application for 
transformers irises and filters / H. Patzelt, F. Arndt // IEEE Trans Microwave Theory Tech. – 

Vol. MTT-30, no. 5. – P. 771 – 776. 

3. Ise, K. Three-dimensional finite-element method with edge elements for 
electromagnetic waveguide discontinuities / K. Ise, K. Inoue, M. Koshiba // IEEE Trans. 

Microwave Theory Tech. – 1991. – Vol. 39, no. 8. – P. 1289 – 1295. 

4. Deshpande, M.D. Analysis of waveguide junction discontinuities and gaps using 

finite element method / M.D. Deshpande, C.J. Reddy, M.C. Bailey // Electromagnetics. – 

1998. – Vol. 18. – P. 81 – 97. 

5. Quesada Pereira, F.D. An efficient integral equation technique for the analysis of 

arbitrarily shaped capacitive waveguide circuits / F.D. Quesada Pereira, P. Vera Castejón, A. 

Alvarez Melcon, B. Gimeno Martínez, V.E. Boria Esbert, // Radio Sci. – 2011. – Vol. 46, no. 

RS2017. – P. 1 – 11. 
6. Amitay, N. Theory and analysis of phased array antennas / N. Amitay, V. Galindo, C. 

Wu. – New York: Wiley-Interscience, 1972. – 462 p. 

7. Gnatyuk, M.A. On the Schwarz alternating method for solving electromagnetic 
problems / M.A. Gnatyuk, V.M. Morozov // Proceedings of International Seminar/Workshop 

on Direct and Inverse Problems of Electromagnetic and Acoustic Wave Theory, DIPED. – 

2015. – P. 132 – 135. 

8. Gnatyuk, M.A. A Schwarz algorithm for three-dimensional diffraction problems / 

M.A. Gnatyuk, V.M. Morozov, A.M. Sjanov // Telecommunications and Radio Engineering 

(English translation of Elektrosvyaz and Radiotekhnika). – 2015. – Vol. 74, Issue 1. – P. 1 – 8. 

9. Prokhoda, I.G. The method of partial intersecting domains for the investigation of 

waveguide-resonator systems having a complex shape / I.G. Prokhoda, V.P. Chumachenko // 

Radiophysics and Quantum Electronics. – 1973. – Vol. 16, Issue 10. – P. 1219 – 1222. 
10. Kantorovich, L.V. Approximate methods of higher analysis / L.V. Kantorovich, 

V.I. Krylov. – New York: Wiley-Interscience, 1964. – 681 p. 

11. Prokhoda, I. G. Tenzornye funktsii Grina i ikh primemenie v electrodinamike SVCH 

/ I.G. Prokhoda, S.G. Dmitriuk, V.M. Morozov. – Dneproperovsk: DGU, 1985. – 64 p. 


