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The process of self-ordering in the famous Dicke model was studied in the framework of eliminating 

the boson variables. But the reduced description method enables us to obtain also the picture of 

electromagnetic field evolution provided field amplitudes and correlation functions are included into the 

number of reduced description parameters. In the Dicke Hamiltonian structure the interaction term 

includes the operators of emitter dipole moments or dipole moment density (polarization) since a spatial 

system is under consideration. Thus operator evolution equations are based on using such operators and 

their derivatives. The chain of evolution equations for averaged field amplitudes and binary correlation 

functions are obtained with using the statistical operator calculated in a perturbation theory in quasispin-

photon interaction assumed to be small. The problem of chain decoupling does not arise since at any step 

we have a closed set of equations. The sets should be solved on the basis of material equations for current 

density and their generalizations for more complicated correlation functions. The way to constructing such 

equations and estimating the material parameters which are necessary for the numerical modeling of the 

development of correlations is discussed in the paper. 

Keywords: Dicke model; reduced description; current; material equations; binary correlations, numerical 

modeling. 
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1. Introduction 

The picture of self-organization in the system of two-level emitters interacting via 

electromagnetic field is one of the most interesting examples of ordering in a nonequilibrium 

process. Such a phenomenon predicted by Dicke [1] attracted wide interest among physicists 

from the points of view of both the general theory of nonequilibrium systems and the 

practical possibilities to be opened by the phenomenon implementation. It was named 

superradiance (or superfluorescence) since excited emitters come to their ground state (i.e. 

equilibrium with surrounding medium) with producing a great pulse of electromagnetic 

radiation with intensity proportional to N
2
 where N denotes the total quantity of emitters. 

Such generation is based on the cooperative spontaneous emission instead of the stimulated 

emission used in lasers and so provides the opportunity of coherent light generation in the 

frequency range where the laser mechanism has no prospects because of the absence of 

mirrors (X-rays, γ-rays). Since 70-ies of the past century such ideas were widely discussed 

including their military application. Superradiance implementation in experiment proved to 

be very difficult and was put into life [2] 20 years later than the Dicke’s idea was put forward. 

It is interesting to compare the history of this phenomenon investigation in theory and 

experiment with the research into other collective quantum phenomena [3]. Nevertheless in 

the early 80-ies the consistent theory of the Dicke superfluorescence was developed [4] on 

the basis of the Bogolyubov method of eliminating boson variables [5]. It seems to be 

interesting not only to find the main parameters of a superradiant pulse, but also to obtain 

some description of field evolution at pulse formation. Such interest may be explained by the 

great progress of quantum optics and use of exotic states of electromagnetic field in modern 

experiments [6]. Field behavior can be analyzed by dint of the reduced description method [7] 

proceeding from the Bogolyubov’s functional hypothesis [8]. The authors were the first to 

apply the method to the Dicke model [9, 10]. Then field parameters of reduced description 

were involved into consideration [11, 12] and evolution equations for them were constructed. 

The complexity of the problem made us to turn to the numerical analysis of the field 

evolution [13, 14]. Firstly, we discussed some kind of molecular dynamics modeling, but the 

necessity of taking into account the separation of resonant modes  turned us to applying some 
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continuous functions for field and emitter subsystem description. In any way, we deal 

with the equations for field amplitudes and correlation functions that have to be solved 

with using material equations according to the ideas of electrodynamics of continuous 

media. The problems of constructing material equations for a spatial Dicke model are 

discussed in the present paper. 

The article has the following structure. Section 2 discusses the basic equations of the 

theory. A description of the properties of the physical quantities operators required in this 

section is given in [7]. Section 3 is devoted to the construction of perturbation theory to 

account for the weak interaction of the electromagnetic field and the environment. 

Section 4 presents the material equations to the Maxwell equations. 

2. Basic equations of the theory 

The kinetics of the electromagnetic field in the medium of atoms considered to be 

stationary and two-level are investigated. In the excited state, they have energy ωℏ  and 

an electric dipole moment d
�

. In the generalized quasispin Dike model, the Hamilton 

operator of the system can be written in the form 

0 1
ˆ ˆ ˆH H H= + ,     

0 f m
ˆ ˆ ˆH H H= + ,        

f

,

ˆ
k k k

k

H c cα α
α

ω +=ℏ ,     m

1

ˆ
âz

a N

H r
≤ ≤

= ℏω , 

1
ˆ ˆ ˆ( ) ( )

t

n nH dxE x P x= − ,     ˆ ˆ( ) 2 ( )n ax an a

a

P x r d x x≡ − δ  
(1) 

where 
fĤ  is the Hamiltonian of the free electromagnetic field (

k ckω ≡ ), 
ânr  and 

and  are 

the quasispin operator and the dipole moment of the a-th atom. The vectors 
and  for 

different atoms differ only in the orientation ( 2

an and d d≡ ), which is described by the 

distribution function
dw . ˆ ( )nP x  is the density operator of the electric dipole moment of 

the system. The interaction of atoms and the field is determined by the transverse part 

ˆ ( )t

nE x  of the electric field operator ˆ ( )nE x , since the dipole-dipole interaction of atoms is 

neglected. We consider the interaction of atoms and field as weak that allows us to 

consider the dipole moment d  formally as a small parameter. 

The nonequilibrium state of the field will be described by parameters 
aη  that 

include the average transverse electric and magnetic fields : ( ), ( )
t

n nE x B xµζ and their 

binary correlations ( , )µ µζ ζ ′ . The general definition of the binary correlation function of 

operators â  and b̂  is given by the formula with the statistical operator ρ  of the system 

and their anticommutator 

ˆ ˆˆ ˆ( , ) Sp { , } / 2 Sp Spa b a b a bρ ρ ρ= − . (2) 

The necessity of taking into account at least binary correlations of the field in describing 

its state is related to the nonexistence of statistical operator that describes the field only 

by its average quantities. The state of the medium will be described by the average 

density ( )xε  of its energy 

ˆ( ) Sp ( )x xε ρε= ,       ˆ ˆ( ) ( )az a

a

x r x xε ω δ= −ℏ . (3) 

(hereinafter, the mean value of the quantity a  is denoted by the same letter as its operator 

â ). Thus, the values 
aη  and ( )xε  are the parameters of the reduced description of the 

state of the system. 
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When constructing system dynamics equations, it is convenient to use Maxwell 

equations in operator form, since for an arbitrary operator â , taking into account the 

Liouville quantum equation for a statistical operator ( )tρ  

ˆˆSp ( ) Sp ( )t t a t aρ ρ∂ = ɺ ,     ˆ ˆ ˆ[ , ]
i

a H a≡ɺ
ℏ

, (4) 

where âɺ  is the velocity change operator of the quantity with the operator â  (sometimes 

it is convenient to use the notation ˆ ˆ
ta a≡ ∂ɺ , although all our operators are taken in the 

Schrödinger picture). Maxwell’s equations in the operator form take the expected view 

ˆ ˆrotn nB c E= −ɺ ,     
ˆ ˆ ˆrot 4n n nE c B Iπ= −ɺ ,   ˆdiv 0B = ,    ˆ ˆdiv 4E πρ=  (5) 

if we introduce such definitions for the operators of the complete electric field ˆ
nE  and 

densities of current ˆ
nI  and charge ρ̂  of the system 

ˆ ˆ ˆ4t

n n nE E Pπ= − ,     
ˆˆ

n nI P≡ ɺ ,      ˆˆ divPρ ≡ − , 

   ˆ ˆ2 ( )n an ay a

a

I d r x xω δ= − − . 
(6) 

The same applies to the operator equation for the energy density of the medium 

ˆ ˆ ˆ( ) ( ) ( )t

n nx I x E xε =ɺ . (7) 

The Maxwell temporal operator equations in terms of fields ˆ ( )t

nE x  and 

ˆ ( )nB x according to (5) and (6) have the form 

ˆ ˆ ˆrot 4 rott

n n nB c E c P= − +ɺ π ,     
ˆ ˆrott

n nE c B=ɺ , (8) 

or in compact notation ˆ
µζ :   ˆ ( )t

nE x ,   ˆ ( )nB x  

ˆ ˆ ˆi Qµ µµ µ µ
µ

ζ ζ′ ′
′

= +cɺ ,            Q̂µ :   0 ;   ˆ4 rotnc Pπ  (9) 

where µµ′c  is some numerical matrix. The corresponding equation for the averages has 

the same form 

t i Qµ µµ µ µ
µ

ζ ζ′ ′
′

∂ = +c ,      Qµ :   0 ;    4 rotnc Pπ . (10) 

Further on it is convenient to use even more compact notations ˆ ˆ
i iµζ ζ≡ , ... ...

i iµ

≡  , in 

which relation (10) takes the form 

1 12 2 1

2

t i Qζ ζ∂ = +c . (11) 

It is easy to get the relations from (11) 

1 2 11 1 2 22 1 2 1 2 1 2

1 2

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ{ , } { , } { , } { , } { , }t i i Q Qζ ζ ζ ζ ζ ζ ζ ζ′ ′ ′ ′
′ ′

∂ = + + + c c ,   

1 2 11 1 2 22 1 2 1 2 1 2

1 2

t i i Q Qζ ζ ζ ζ ζ ζ ζ ζ′ ′ ′ ′
′ ′

∂ = + + + c c , 
(12) 
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from which the evolution equation follows for the binary correlations defined in (2) 

1 2 11 1 2 22 1 2 1 2 1 2

1 2

( , ) ( , ) ( , ) ( , ) ( , )t i i Q Qζ ζ ζ ζ ζ ζ ζ ζ′ ′ ′ ′
′ ′

∂ = + + + c c . (13) 

Equations (11) and (13) give a complete set of time equations for the parameters 
aη  of 

the reduced description of the electromagnetic field in the medium, i.e. µζ  and ( , )µ µζ ζ ′ . 

The evolution equation for the energy density of the medium according to (7), taking into 

account definition (2), is 

( ) ( , , )t x L xε η ε∂ = ,     ˆ ˆ( , , ) Sp ( , ) ( ) ( )t

n nL x I x E xη ε ρ η ε≡ . (14) 

Our consideration of nonequilibrium states of the system is based on the 

Bogolyubov idea of the functional hypothesis 

0
( ) ( ( ), ( ))

t
t t tτρ ρ η ε

>>
→ , 

ˆSp ( , ) a aρ η ε η η≡ ,      ˆSp ( , ) ( ) ( )x xρ η ε ε ε≡ , 
(15) 

which is the basis of his method of reduced description of nonequilibrium processes (
0τ  

is characteristic time, which depends on the initial state of the system). The statistical 

operator ( ( ), ( ))t tρ η ε  is the exact solution of the quantum Liouville equation 

ˆ( ( ), ( )) [ , ( ( ), ( ))]t

i
t t H t tρ η ε ρ η ε∂ = −

ℏ
. (16) 

The study of nonequilibrium processes in the system is simplified by the presence of 

relations 

0
ˆ ˆ

a ab b

b

iη η= − L c ,     
0
ˆ( ) 0xε =L         (

0 0
ˆˆ ˆ[ , ]

i
a H a≡ −L

ℏ
) (17) 

where 
abc  is some numerical matrix, which is expressed through the matrix µµ′c . These 

relations are a special case of the Peletminsky–Yatsenko model of the nonequilibrium 

process [7]. In this model, the statistical operator ( , )ρ η ε  of the system satisfies the 

integral equation 

0

1

0

( , )
( , ) ( , ) ( , ) ( , )q a

a a

d e L
τ ρ η ε

ρ η ε ρ η ε τ ρ η ε η ε
η

+∞  ∂
= + − −

∂


L
L  

( , )
( , , )

( ) i
a ab bb

e
dx L x

x τη η

δρ η ε
η ε

δε −→


− 

 
 c

. 

(18) 

Functions ( , )aL η ε , ( , , )L x η ε  determine the evolution equations (10), (13) and (14) for the 

parameters of the reduced description of the system 

( , )aL η ε  ≡  
1Q ,   

1 2 1 2( , ) ( , )Q Qζ ζ+ , (19) 

where the averages are calculated using the statistical operator ( , )ρ η ε . 

The statistical operator ( , )qρ η ε , according to the Peletminsky–Yatsenko model, 

looks like 

f m( , ) ( ) ( )qρ η ε ρ η ρ ε= ,     
m r d( ) ( )w wρ ε ε= ; (20) 
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f
ˆ( ) exp{ ( ) ( ) }a a

a

Zρ η η η η= Ω − ,     
f fSp ( ) 1ρ η = ,   

f f
ˆSp ( ) a aρ η η η= ; 

r
ˆ( ) exp{ ( ) ( , ) ( )}w dxZ x xε ε ε ε= Φ −  ,     

r rSp ( ) 1w ε = ,      
r r

ˆSp ( ) ( ) ( )w x xε ε ε= ; 

d dSp 1w = ;     
f mSp... Sp Sp ...= ,      

m r dSp ... Sp Sp ...=      

Here 
f ( )ρ η  is a quasi-equilibrium statistical operator of an electromagnetic field. The 

operator ˆ
aη  in 

f ( )ρ η  includes field operators ˆ t

nE , ˆ
nB  and all their anticommutators. 

Therefore, in the exponent 
f ( )ρ η  there is a quadratic form of the Bose-operators of the 

field, which ensures the existence of traces with it. The operator 
r ( )w ε  is a locally 

equilibrium statistical operator of the medium and hence 1( , ) ( , )Z x T xε ε −≡  is the inverse 

temperature of the medium. Traces with the operator 
r ( )w ε  are taken in quasi-spin space. 

Value 
dw  is a function of the distribution of the orientations of the dipoles of the atoms of 

the medium. 

3. Construction of perturbation theory for electromagnetic field and medium 

Integral equation (18) should be solved with respect to the statistical operator 

( , )ρ η ε  in the perturbation theory on the small interaction of the electromagnetic field 

with the medium described by the Hamilton operator 
1Ĥ . It is convenient to assume that 

the formal small parameter is the dipole moment d  of an atom, since 
1Ĥ  is proportional 

to d. According to (18), 

(0) (1) 2( , ) ( )O dρ η ε ρ ρ= + + ,     (0)

qρ ρ=  (21) 

( ( )s
a  is the contribution of the order s

d  to the value a ). Now we show that the first order 

contributions to ( , )aL η ε  and ( , , )L x η ε  are absent 

(1) 0aL = ,      (1) 0L = .      (22) 

To this end, it should be noted that in further all traces that need to be calculated have a 

structure 

f m f m f m f f m m
ˆ ˆ ˆˆ ˆ ˆSp Sp Sp Sp Spa b a b a b= =       (23) 

where operators 
fâ , 

mb̂  refer to the electromagnetic field and environment. According to 

(6), (9), and (21), in the basic approximation averages (19) are calculated with the 

statistical operator 
qρ  and the averaged values include the operators 

âxr  and 
âyr  linearly. 

The relations (22) become obvious since the formulas are true 

r r
ˆSp 0axw r = ,      r r

ˆSp 0ayw r = .      (24) 

The averages of the product of several quasispin operators 
âlr  with a statistical operator 

are easily calculated in the representation of these operators using Pauli matrices. For the 
calculation of such averages, a theorem of the Wick–Bloch–de Dominiсis theorem type is 

valid (see, for example, [10]), but we will not present it here. 

Even easier on the basis of (24), taking into account the expressions for the dipole 

moment density (1) ˆ ( )nP x  and the current density (6) ˆ ( )nI x  of the system, the absence of 

first order contributions in their mean values is proved. 
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(1) 0nP = ,      (1) 0nI = .      (25) 

The first-order contribution (1)ρ  to the statistical operator ( , )ρ η ε  from integral 

equation (18) considering (1) and (20) – (22) is reduced to the form 

0 0

0 ˆ ˆ
(1)

1
ˆ,

i i
H H

q

i
d e H e

τ τ

ρ τ ρ
−

−∞

 
= − = 

 
 ℏ ℏ

ℏ
 

0

f m
ˆ ˆ, ( , ) ( , )

t

n n

i
d dx E x P xτ ρ ρ τ τ

−∞

 = −   
ℏ

         

(26) 

where indicated 

f f
ˆ ˆ

ˆ ˆ( , ) ( )
i i

t t

n n

H H

E x e E x e
τ τ

τ
−

≡ ℏ ℏ  ,      
m m

ˆ ˆ
ˆ ˆ( , ) ( )

i i

n n

H H

P x e P x e
τ τ

τ
−

≡ ℏ ℏ         (27) 

Herewith the identity that is valid for the statistical operator ( , )qρ η ε  in the Peletminsky–

Yatsenko model is used [7] 

0 0
ˆ ˆ

( , ) ( , )
i i

H H
i

q qe e e
τ τ

τρ η ε ρ η ε
−

−= cℏ ℏ  (28) 

Via the time equation method for quantities ˆ ( , )nP x τ  and ˆ ( , )t

nE x τ , taking into account the 

corresponding commutation relations for operators, we find 

1ˆ ˆ ˆ( , ) ( )cos ( ) sinn n nP x P x I xτ ωτ ω ωτ−≡ +  ,      

1ˆ ˆ ˆ( ) cos sint t

nk nk k nk k kE E cZτ ω τ ω ω τ−= +      ( ˆ ˆ( ) rot ( )n nZ x B x≡ ).        
(29) 

The periodic boundary conditions and the corresponding Fourier transform definition are 

used here and hereafter 

1
f ( ) fk

k

i k x
x e

V
=  ,      f f ( )k

V

i k x
dx x e

−≡  . (30) 

4. Material equations to the Maxwell equations in the medium 

Let us proceed to the calculation of the average current 
nI . Formulas (4) and (6) 

show that the mean values of current and polarization are related by a simple formula 

n t nI P= ∂          (31) 

and so it is convenient to start by calculating the average polarization. According to (23) 

and (26) we have 

0

(2)

f f m m
ˆ ˆ ˆ( ) Sp ( , )Sp ( ), ( , )

t

n l n n

i
P x d dx E x P x P xτ ρ τ ρ τ

−∞

 ′ ′=   
ℏ

         (32) 

where with taking into account (1), (6), and (29)  

ˆ ˆ ˆ( ), ( , ) 4 ( ) ( )sinn n nlP x P x i x x a xτ δ ωτ ′ ′= − −  ,      ˆ ˆ( ) ( )nl an al az a

a

a x d d r x xδ≡ − .      (33) 

In terms of Fourier images, the mean polarization value according to (29) and (30) takes 

the form 

( )
0

(2) 14
( ) cos sin ( )sin

t

n nk k nk k k nl

k

ikx
P x e d E cZ a x

V
τ ω τ ω ω τ ωτ−

−∞

= + 
ℏ

 (34) 
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where 

m m r r d d
ˆ ˆ( ) Sp ( ) Sp Sp ( )nl nl nla x a x w w a xρ≡ = ,   

f f
ˆSp t t

nk nkE Eρ = ,   
f f

ˆSp nk nkZ Zρ = . (35) 

The last two formulas take into account the third formula in (20), definitions (29) and 

additionally state that the mean values of the field are calculated directly with the 

statistical operator 
fρ . 

In the expression for the function ( )nla x , there is averaging over the orientations of 

atom dipoles of the medium. To simplify the consideration, in further we limit ourselves 

by the case of isotropic distribution of dipoles of atoms and the assumption that there are 

no correlations between them, which is natural, since in our consideration we neglect the 

dipole-dipole interaction of atoms. As a result, we have 

dSp 0and = ,     2

d dSp / 3an bl ab nlw d d dδ δ=        ( 2

an and d d= ) (36) 

(atom dipoles differ only in direction). In this case, according to (3) and (20) we have a 

simple expression for the function ( )nla x  through the energy density of the medium. 

2

( ) ( )
3

nl nl

d
a x xε δ

ω
=
ℏ

,       
r r

ˆ( ) Sp ( )x w xε ε=  (37) 

(see (20)). 

The integrals over τ  in (34) should be taken in the class of generalized functions by 

associating their computations with the thermodynamic limit transition by the usual rule 

3

3
... ...

(2 )

TL

k

V
d p

π
=   (38) 

Regularizing the necessary integrals, we have 

0 0

0
cos sin lim cos sink kd d e

ε

εττ ω τ ωτ τ ω τ ωτ
→+

−∞ −∞

= =   

1 1

2 20

1
lim Im {[ ( ) ] [ ( ) ] } P

2
k k

k

i i
ε

ω
ω ω ε ω ω ε

ω ω
− −

→+
= + + + − + =

−
 

(39) 

since 

1 1

0

1
lim( ) ( 0) P ( )x i x i i x

xε
ε πδ− −

→+
+ = + = − . (40) 

In (39) and (40), the limit transitions should be understood in a weak sense. Practically, 

this means that these transitions should be performed after the thermodynamic limit 

transition in accordance with (38) and the calculation of the corresponding integrals (as 

usual, the symbol 
1

P
x

 means that the integral of 
1

x
 is taken in the principal value sense). 

Similarly to (39), we have  

0 0

0
sin sin lim sin sink kd d e

ε

εττ ω τ ωτ τ ω τ ωτ
→+

−∞ −∞

= =   

1 1

0

1
lim Im {[ ( ) ] [ ( ) ] } ( )

2 2
k k ki i

iε

π
ω ω ε ω ω ε δ ω ω− −

→+
= + + − − + = −      ( , 0kω ω > ). 

(41) 

As a result, we obtain the final expression for the mean polarization of the medium 
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(2) 1
[ ( , , ) ( , , ) ]t

nk nk nk

k

P k k E c k k Z
V

κ ε λ ε′ ′
′

′ ′= +  (42) 

where designated 

2

2 2 2

4
( , , ) P

3
k k

k

d
k k

ω
κ ε ε

ω ω ω
′−

′

′ = −
−ℏ

,     
2

2 2

2
( , , ) ( )

3
k k k

d
k k

π
λ ε ε δ ω ω

ω
′− ′

′ = −
ℏ

. (43) 

In its sense, the expression (42) for the polarization of the medium is the material 

equation of electrodynamics in the case of a spatially inhomogeneous medium. Other 

options for writing this material equation are possible, based on the identities of the type 

1
f ( , , ) t

nk nk

k

k k E
V

κ ε ′
′

′≡  ,      ( , , ) kk kk kκ ε ε χ ′− ′
′ ≡  

1
f ( ) ( , ( )) ( , ( )) ( )

ikx t t
n nk n

k V

x e k x E dx x x x E x
V

κ ε κ ε′ ′ ′= = −  ,      ( , ) kkκ ε εχ=  

(44) 

where fnk
, t

nkE , ( , )kκ ε  are Fourier images of functions f ( )n x , ( )
t

nE x , ( , )xκ ε  

determined according to (30). Regarding the expression for the polarization of the 

medium it gives 

(2) 1
( ) [ ( , ( )) ( , ( )) ]t

n nk nk

k

ik x
P x e k x E c k x Z

V
κ ε λ ε= + ,

(2)
( ) [ ( , ( )) ( ) ( , ( )) ( )]

t

n n n

V

P x dx k x x x E x c x x x Z xε λ ε′ ′ ′ ′ ′= − + − ; 

2

2 2 2

4
( , ) P

3 k

d
k

ω
κ ε ε

ω ω ω
= −

−ℏ
,       

2

2 2

2
( , ) ( )

3
k

d
k

π
λ ε εδ ω ω

ω
= −

ℏ
 

(45) 

The second version of the material equation is more natural because it simply takes into 

account the spatial inhomogeneity of the medium. The material coefficient ( , )kκ ε  has 

the meaning of dielectric susceptibility. The coefficient ( , )kλ ε  describes the effect of 

frequency dispersion in our terms, since 1rot t

n n t nZ B c E
−= = ∂  (see (8), (29)). 

To calculate the mean current, we proceed from the formula (31), which gives 

 (2) (2) (2)
( )nk t nkI P= ∂ . (46) 

It shows that the energy density ε  should not be differentiated in (42) and (44) when 

calculating the current, since, according to (14), (19), and (22), 2~t dε∂ . In view of 

formulas (8), (24), and (29) we have 

 t

t n nE cZ∂ = ,     2
rot rot ( )

t

n nZ c E O d∂ = − +  (47) 

and therefore 

(2) 1
( ) [ ( , ( )) ( , ( )) ]

t

n nk nk

k

ik x
I x e k x E c k x Z

V
σ ε ξ ε= + ,

(2) ( ) [ ( , ( )) ( ) ( , ( )) ( )]t

n n n

V

I x dx x x x E x c x x x Z xσ ε ξ ε′ ′ ′ ′ ′= − + −  

(48) 

where 
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2

2

2

2
( , ) ( , ) ( )

3
k k

d
k k

π
σ ε λ ε ω ε δ ω ω≡ − = − −

ℏ
, 

2

2 2 2

4 1
( , ) ( , ) P

3 k

d
k kξ ε κ ε ε

ω ω
≡ = −

−ℏ
 

(49) 

In its sense the expressions (48) for the current in the medium are material equations of 

electrodynamics in the case of a spatially inhomogeneous medium. The material 

coefficient ( , )kσ ε  makes sense of conductivity. The material coefficient ( , )kξ ε  

describes the effect of frequency dispersion in our terms, since 1rot t

n n t nZ B c E
−= = ∂  (see 

(8) and (29)). 

According to (6) and (24), the average charge density of the medium is given by 

formulas 

divPρ = − ;      (1) 0kρ = ,     (2) (2)

k n nkik Pρ = −            (50) 

with taking into account expressions (42) and (45) for polarization. It should be noted that 

in the space-homogeneous state the charge of the medium is absent, since in this case the 

polarization vector has only a transverse component (in accordance with (29), 

[ , ]nk k nZ i k B= ). 

The equations of electrodynamics in the medium, according to (4) and (5), have the 

usual form 

rott n nB c E∂ = − ,     rot 4t n n nE c B Iπ∂ = − ,   div 0B = ,    div 4E πρ= .           (51) 

Formulas (47) and (50) give material equations for them. With the considered accuracy, it 

is possible to replace the transverse field with a complete one in these equations since 

from (6) and (25) it follows that 24 ( )t t

n n n nE E P E O dπ= − = + . As a result, in our 

approach, the electromagnetic field in the medium is described by the average 
nE , 

nB  

and their binary correlations. Although we construct the reduced description on the basis 

of the Peletminsky–Yatsenko model, where mean fields t

nE , 
nB  and their binary 

correlations are used as reduced description parameters, equations (51) remain accurate 

and the material equations with the accepted accuracy contain a complete electric field 

nE . Note that in the considered approximation the material equations to the Maxwell 

equations do not include field correlations. 

5. Conclusions 

The results of this paper consist in constructing the set of equations of the 

electrodynamics of continuous medium created by two-level emitters with random (or 

fixed) orientation. They have usual Maxwell form if medium charge and emitter current 

density are taken into account. The system evolution is investigated in the reduced 

description scheme providing the possibility of studying field correlations. Material 

equations connecting the polarization and current density with electric and magnetic field 

parameters prove to be necessary. Such equations are built in the way taking into account 

the resonant nature of matter-field interaction. The possibility of using the complete 

electric field in equations is substantiated if the matter-field interaction is considered to be 

a small parameter. The local field characteristics depend on the emitter subsystem energy 

density. The evolution equation for this quantity should be derived in our next paper. 

Thus, presented results are the basis for the future investigation of self-ordering processes 

in the Dicke model with the picture of field behavior. 
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