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It is known that basic stability characteristics of a system are inversely proportional to fluctuations of 

external parameters. Above the critical point there is a region remaining homogeneous macroscopically, 

but becoming microheterogeneous within an interval of thermodynamic forces. Within this interval 

thermodynamic coefficients of stability pass finite non-zero minima. This corresponds to the considerable 

growth of fluctuations and indicates the occurrence of supercritical transition of continuous kind. The limit 

case of such continuous phase transitions is the critical state, which is also the limit point of some first-kind 

transitions (the limit point of phase equilibrium curve). 

In this paper we consider the relation between thermodynamic stability conditions and fluctuations of 

external parameters of the system. We study the behavior of a simple one-component thermodynamic 

system (liquid, magnet, and ferroelectric) in the supercritical region and derive the equation of the line of 

supercritical transition for this system.  

Keywords: thermodynamic stability, critical state, supercritical phase transitions, heat capacity, coefficients 
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1. Introduction 

As we know, in the critical state the system is in extreme conditions – at the boundary of 

thermodynamic stability. So, there is maximum development of fluctuations that causes 

anomalies in the behavior of thermodynamic quantities. One of the main tasks of critical state 

thermodynamics is to reveal the origin of these anomalies, to determine the behavior of 

thermodynamic quantities in the vicinity of the critical points.  

In this paper we consider some aspects of the behavior of main stability characteristics for a 

simple system above the critical temperature. Numerous experiments for liquids [1–9] 

indicate that supercritical area, remaining homogeneous macroscopically, becomes 

microheterogeneous within an interval of thermodynamic forces. From the point of view of 

the thermodynamic stability theory [10, 11] this indicates the existence of a continuous 

supercritical transition between supercritical phases. This kind of transition implies that 

system passes through a region of lowered stability, which leads to progressively increasing 

fluctuations [12]. The region of great growth of energy fluctuations should not necessary 

coincides with the region of great increase of fluctuations of, for example, density. Therefore, 

curves of lowered stability for different stability coefficients need not be the same. This 

confirms the fact that supercritical transitions occur in the certain interval of thermodynamic 

forces. For magnetic system we have the same situation as for liquid: under ferromagnetic 

transformation the system remains one-phase and transition represents its passing through the 

region of lowered stability, where mainly the structural transformation from one quasiphase 

to another takes place [13, 14]. Magnetic mesophase is a mixture of areas with different 

degrees of ordering of orbital and intrinsic moments. According to thermodynamic stability 

the ferromagnetic transformations are of the same mesophase origin as supercritical 

transitions in liquid–vapor system that shows macroscopically as similar run of the curves for 

stability determinant and coefficients. 

2. The equation of line of supercritical transitions for thermodynamic systems 

The kind of phase transition is known to be determined by the behavior of principal 

characteristics of thermodynamic stability of the system: the determinant of stability 

),(),(= xSXTD ∂∂  (Jacobian consisting of derivatives of thermodynamic forces X  with 

respect  to thermodynamic coordinates x ),  and  the  coefficients  of  stability – derivatives of 
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thermodynamic forces with respect to corresponding coordinates at constant other forces 

or coordinates (the isodynamic quantities ( )
X

ST ∂∂ , ( )
T

xX ∂∂  or the adiabatic 

quantities ( )
x

ST ∂∂ , ( )
S

xX ∂∂ ). These characteristics are inversely proportional to the 

fluctuations of the external parameters of the system, which is the primary cause of the 

phase transition. During the transitions of continuous kind the coefficients of stability and 

D  pass through finite minima. It corresponds to the fluctuation growth. The locus curve 

of these minima is the curve of the transitions of continuous kind (the curve of 

supercritical transitions, the quasispinodal) [12]. 

It should be noted that for different coefficients of stability, the lowered stability 

curves may not coincide. Thus, we use as a basis the line of lowered stability for D , 

which contains all the equilibrium characteristics of the system and therefore most 

completely describes its stability.  

The threshold case of supercritical transitions, when fluctuations in the system 

become maximum, D  and coefficients of stability pass through the zero minima, is called 

a critical state. The critical point is the end-point for some first-order transitions (the finite 

jumps of D  and stability coefficients are intrinsic to the first-order transitions). 

Let us consider this problem in detail basing on the quasi-thermodynamic theory of 

fluctuations [15, 16]. It follows from the above that the point of the supercritical phase 

transition – the point of lowered stability – must be the extreme point of fluctuations. For 

example, according to the first Gibbs lemma ( ) 23 )(= HkTST
x

∆∂∂  the condition  

0=)( 2
Hd ∆

 

(1) 

corresponds to the minimum of the thermal adiabatic stability coefficient ( )
x

ST ∂∂  ( H is 

energy of the system). Considering this condition in the case of system affected by 

temperature T  and pressure P , we obtain a line of lowered stability – the minimum 

locus of ( )
V

ST ∂∂ . At the critical point ( )
V

ST ∂∂  passes through a zero minimum. 

Above the critical point ( )
V

ST ∂∂  passes through non-zero finite minima which depth 

decreases with distance from the critical point.  

The probability of an arbitrary state of entire system (subsystem + environment) 

according to the Boltzmann principle is related to the total entropy of the system totS  by 

the relationship 
kS

ew
/

tot
~ . From the standpoint of fluctuations study, it can be rewritten 

in the form  

, ==
)/

0
(/

tot
kSSkS

AeAew
∆+∆

 

(2) 

where 0S∆  is change in entropy of environment and S∆  is change in entropy of the 

system compared to their values in an equilibrium state, k  is Boltzmann constant. 

In the case of constant number of particles const=N , the entropy change of 

environment can be represented as  

. ==
0

0

0
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∆

 
 

The possibility of such an expression is justified by the fact that we are interested in 

fluctuations that occur in the system. So, the environment, because of its large size, we 
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consider as equilibrium, that is the gradients of its parameters can occur only in a thin 

surface layer at the boundary with the subsystem. For the quantity in the exponent in (2) 

we get the expression ( ) kTUVPST ∆−∆−∆ 00 , whereU  is internal energy of the system. 

Considering the small fluctuations, let us expand U∆  into a series in terms of 

powers of increments of arguments S∆ , V∆  up to the second-order accuracy terms [17] 

, 
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where all derivatives of internal energy are taken in the equilibrium state. Taking account 

of ( ) 00
= TSU ∂∂  and ( ) 00

= PVU −∂∂ , let us make sure that the terms linear in S∆ , V∆  

in the exponent of formula (2) cancel each other and this exponent equals  
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Then, expression (2) is written in the form:  

 
2

exp= 



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(3) 

(we do not write an index 0 in temperature, by T  is meant its equilibrium value).  

In other case (constant volume, fluctuating number of particles) the change in 

entropy of environment during fluctuations in the subsystem should be written as  

0
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and completely analogously to the first case, we obtain the expression 

. 
2

exp= 




 ∆∆+∆∆
−

kT
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Aw
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(4) 

There is another possibility of the separation of a subsystem from its environment 

when both volume and number of subsystem particles can fluctuate – separation by a 

physical boundary layer. The simplest examples are: drop of liquid in a vapor, gas bubble 

in a liquid, crystal in a melt, etc. In such cases one could obtain an expression, in which, 

contrary to (3) and (4), the exponent would be three-termed: 

kTNSTVP )/2( ∆∆−∆∆−∆∆ µ . However, in the presence of the physical boundary 

between the environment and the subsystem, along with the volume fluctuations, the 

boundary surface fluctuations are essential. As this take place, new thermodynamic 

degrees of freedom (for example, capillary waves on the boundary surface, changing the 

facet of the crystal, etc.) appear, and the problem is significantly more complicated.  

Let us find fluctuations of various thermodynamic quantities. First we choose V , T  

as independent variables. Then,  
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Substituting these expressions into the exponent of Eq. (3), we find that the terms of 

TV∆∆  are cancelling out and we obtain  
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(5) 

This expression splits into two factors that depend only on T∆  or V∆ . In other 

words, volume and temperature fluctuations are statistically independent, and therefore  

. 0=VT∆∆

 

 

Comparing in succession either of the two decomposing factors (5) with the general 

formula for Gaussian distribution  
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we find such expressions for the mean squares of fluctuations in temperature and volume  
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The positivity of these quantities is provided by thermodynamic inequalities 0>VC  and 

( )  0>
T

VP ∂∂− . 

Let us find the mean square of the energy fluctuations. We have  
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By squaring this expression and averaging, we get  
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(6) 

Considering (6), we can rewrite the condition (1) in the form  
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(7) 

The condition (7) describes a family of isolines of a constant level of energy 

fluctuations on VT  plane for this system. Alongside with these lines, there are isolines of 

constant level of internal energy  
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In general, the isolines being in different families intersect. The exceptions are the 

tangency points where the combining of the extreme properties of internal energy and its 

dispersion is observed. In the line of equal energies 0=dU , extreme energy fluctuations 

are determined by the condition 0=)( 2
Hd ∆  and vice versa. The combination of these 

two differential equations enables us to determine the curve with extreme fluctuation 

properties on VT  plane:  


























+








−









∂

∂









∂

∂
−









∂

∂
+

∂

∂









−









∂

∂
+

0.=

0=

2

2

V

VT

V

V

CkTP
T

P
T

P

V
kT

V
dV

T
dT

dVP
T

P
TdTC

 
(8) 

Equation (8) can be considered as a system of homogeneous equations with 

unknown variables dV  and dT  with corresponding coefficients. A necessary criterion 

for the existence of a nontrivial solution of this system is equal-zero determinant 

composed of the coefficients of this system. This condition determines the equation of the 

line of extreme relative energy fluctuations, that is the equation of the line of supercritical 

transitions in the terms of variables T  and V  for the system under consideration:  
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(9) 

To compose equation (9), in each case it is necessary to know ( )
V

TS ∂∂  and 

),(= TVPP . The latter value is nothing but thermal equation of state. To determine 

( )
V

TS ∂∂  one can use the thermodynamic identity  
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from which it follows that  
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Equation (10) is quite accurate at some distance from the critical point, where the 

energy fluctuations are not very large, and can be used by the appropriate approximation. 

In the vicinity of the critical point where fluctuations are significant, the use of equation 

(10) needs to be clarified. The question arises about the validity of this equation at the 

critical point proper, which in its physical sense is the beginning of a supercritical line, 

where the liquid and gas states are separated. 

Let us expand the condition (9):  
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and rearranging the terms, we obtain 
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For systems, which thermal equation is linear in temperature, ( ) 0=22

V
TP ∂∂  and 

heat capacity is id= VV СС  because of (10). According to the Gibbs rule, ( ) 0=2
VTP ∂∂∂  

at the critical point. This relation should also be fulfilled along the entire low-stability 

line where ( )
T

VP ∂∂  passes through a minimum as a function of V  and T . Considering 

this, we have 
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(11) 

And this is the equation of the line of supercritical transitions according to 

V.K. Semenchenko [12]. 

A similar result can be obtained for magnets if using the analogy of liquid and 

magnetic systems. 

Let us now consider this situation in the general case of a simple one-component 

system, which is under thermodynamic forces T  and X  [18]. Determinant of stability is 
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Then, as mentioned previously, the following condition must be fulfilled on the 

supercritical transition line: 
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With accounting Eq. (12), the last two equations give:  
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This system of equations holds if 
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Putting EHPX ,,−=  and P,, MVx =  (where P  is pressure, EH and  are intensities 

of, respectively, magnetic and electric fields, V  is volume, M  is magnetization and P  is 

electric polarization), we obtain the quasi-spinodal equation for liquid, magnetic, and 

dielectric systems.  

4. Conclusions 

In this paper we considered thermodynamic stability of a simple one-component 

system (liquid and generalized one, which is under thermodynamic forces T  and X ) 

above the critical point. When the temperature exceeds the critical temperature, the 

system passes through a region of lowered stability. This leads to the increase of 

fluctuations of energy and external parameters of the system. From the point of view of 

thermodynamic stability, this indicates the existence of a continuous supercritical 

transition between supercritical mesophases. We studied the behavior of thermodynamic 

parameters of the system in the supercritical area of lowered stability both from 

viewpoints of thermodynamic stability theory and quasi-thermodynamic theory of 

fluctuations and obtained the equation of the line of supercritical transition (quasi-spinodal). 
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