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The one-photon vertex in presence of strong magnetic field and finite temperature in dense medium is 

computed, its properties are investigated. Calculations are performed in analytical forms for two cases: at 

zero temperature and at high temperature. The integral form of the vertex is obtained for a general case. 

The tensor function is represented as the sum of Feynmanʼs one-loop diagrams. The induced charge 

dependence on chemical potential, temperature, and strong magnetic field is investigated in detail. The 

induced potential is calculated for the case of the infinite medium plate. 
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1. Introduction 

The quantum nature of physical vacuum provides phenomena, which can be observed 

even on a macroscopic scale, such as the Casimir effect [1], light-by-light scattering or 

Delbrück scattering [2, 3]. But, much more processes are forbidden in pure vacuum. It 

concerns those requiring the photon vertices with an odd number of external photon lines. 

The Furry theorem [4] suppresses such vertices in the vacuum. But in the presence of a 

medium with sufficiently high chemical potential, its conditions are not satisfied. This 

happens because of the c-parity violation. In aforementioned circumstances completely new 

phenomena could arise. 

Phenomena occurring in a dense medium with the presence of the chemical potential 

were studied in [5, 6]. But in a real dense medium we face the problem of the "purity" of such 

medium. There can be strong magnetic fields – up to 1015 T – most certainly arisen in the 

medium during its creation, in addition to chemical potential, and even spontaneous creation 

of chromomagnetic field is possible [7, 8]. So, in this paper we extend the aforementioned 

results for the cases of the strong fields and finite temperature in a dense medium. 

From all the series of photon vertices with an odd number of external lines, one-photon 

vertex can provide phenomena, which may significantly change the medium properties by 

creating a spontaneous induced charge. To consider such cases, we have to calculate the 

vertex function generated by the chemical potential, taking into account the presence of 

strong fields and finite temperature. 

In this paper, such a program is implemented in the one-loop approximation. The 

corresponding tensor is calculated using Feynmanʼs diagram with the exact Green function of 

an internal fermion line in magnetic field and finite temperature presence. Two 

approximations are considered – high and zero temperature. The exact expressions for the 

corresponding tensor components are given. Induced charge magnitude dependence on 

chemical potential, finite temperature, and strong magnetic field is investigated in detail. 

2. One-photon vertex in a dense medium 

The one-photon vertex tensor, which exists in the case of the one-loop approximation 

for zero temperature, is defined in a dense medium and non-zero magnetic field as the 

following
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where ν is an index that runs values from one to four and )( pG  
is an electron Greenʼs 

function with the presence of magnetic field and the Euclidean metric is used, 
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μ is a chemical potential of medium, 
μγ  are Dirac matrices, and p4=ip0. 

In case of the stationary and homogeneous field the vertex tensor components are: 
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with spin variable 1±=σ . By summing over σ  and then over n, we get  
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After integration we obtain  
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where ( )( )22
meHμΘ +−  is Heaviside’s step function.  

The structure of the tensor element is similar to that in [5, 6]. But in the presence of 

a magnetic field the magnitude of the tensor components changes. The functionʼs 

argument is different from the case of a "pure" medium: the square of the mass is 

replaced by the sum of the magnetic field strength and the mass squared. In the case 

under consideration not only the threshold of the function is shifted, but also its value in 

the allowed regions changes. Thus, at zero temperature and in the presence of strong 

magnetic field, the induced charge generation is partially or completely suppressed, 

dependently on the field strength and medium parameters. 

3. One-photon tensor at finite temperature 

Now, using the tensor element (4), we insert the inverse temperature function β=1/T 

into it and obtain 
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In a general case, this integral can be calculated in the form of the sum 
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where λ is the function of the mass, magnetic field, chemical potential, and β, 
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Therefore, in case 0=λ  Heaviside’s function equals zero. Then the analytical term 

tends to the expression
( )( )( )

22

222

2 μeH+mβ

eH+mμΘiμ

π

e

−

−
.  

The integral can be calculated as the asymptotic at ∞→β . In this case large 3p  

gives a leading contribution. So, we expand the integrand in series in ( )2m+eH . After 

calculations we obtain  
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that coincides with (5). 

The analytical part of (7) has the linear dependence on T at any temperatures. In the 

case of low temperature, the imaginary part is greater that the real one. It indicates the 

existence of the instability in such a state. This can lead to dissipation processes, such as 

creation of plasmons or generation of transversal photons. The expression (7) displays 

that the impact of the temperature on processes of the induced charge generation is 

significant and cannot be reduced to correction factors. 

4. One-photon tensor at high temperature 

In the case of high temperature asymptotic, β approaches to zero, hyperbolic sinuses 

can be replaced by their arguments and cosines tend to one. Then integration of non-

analytic part of (7) can be fully performed and yields 
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Combining this result and the analytical part of (7), we obtain the exact expression 

for the temporal element. 
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In the case of T>>μ this is simplified to 

( ) 







−=Π

4

1

2
4

iμ

β
λΘ

π

e
. (11) 

In high temperature approximation, λ tends to 
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Therefore, the contribution of the sum of squared masses is strongly diminished, and the 

allowed region for the tensor component is any non-zero μ. Thus, we have a linear 

dependence on the temperature with the addition of a small imaginary correction. The 

influence of high temperature ensures the generation of the induced charge even for small 

values of the chemical potential. 

5. Behavior of induced charge and potential 

Aforementioned results were obtained in our previous paper [9]. We used them here 

to obtain the density of the induced charge. In the low temperature approximation, we get 
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and in high temperature approximation, we obtain 
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We plotted the dependence of induced charge density on temperature for several 

values of chemical potential and magnetic field. 

In the case when the sum of the squared fermion mass and the magnetic field 

strength is lower than the square of the chemical potential, the approximation of the low 

temperature gives a substantial density for the induced charge in the field of applicability. 

But its contribution decreases rapidly at a temperature increase. In the opposite case, the 
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low temperature approximation gives zero for the induced charge density and the high 

temperature approximation has a threshold. At some temperature, dependent on chemical 

potential and magnetic field, induced charge density occurs sharply. Thus, by changing 

the magnetic field, we can control at what temperature the induced charge generation 

begins.  

 

 

 

Fig. 1. The temperature dependence of the induced charge density. 

The solid line presents the plot for high temperature approximation;                          

the dashed line shows the plot for low temperature approximation. 
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We consider the medium confined in the plate of the size L in z-axis direction and 

infinite in x and y directions. The classical potential φ is calculated from the equation 

( )βµρϕ
µ

,,2

2

2

mm
x

D −=











−

∂

∂
. (14) 

Making Fourier’s transformation to momentum k-space, we derive the spectrum of 

modes – 
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is Debye’s plasmon mass. The discreteness of kz is due to the periodic boundary condition 

for the plate: ( ) ( )Lzz +=ϕϕ . The general solution to Eq. (14) is 
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In the case of the zero induced charge d=0 and we have two plasmon modes. In 

presence of induced charge, we use the boundary condition 
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that results in the expression 
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The generated potential depends on z-coordinate only.  

In case of high temperature Debay’s temperature mass has the order 
222

TemD ≈ . 

We use this approximation and the explicit form of ( )βµρ ,,m  and obtain the 

approximate expression for the induced potential inside the plate at high temperature, 
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We plotted the dependence of the induced potential of the plate on the z-distance for 

several values of temperature. 

In this plot, we observe the growth of the induced potential in each point of space at 

temperature increase. The temperature step also exists. Below it the induced potential 

equals zero. 
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Fig. 2. The dependence of induced potential on distance. 

Under the used conditions, the potential at 
emT 3≤  is equal to zero. 

6. Discussion 

The generation of the induced charge in dense medium takes place at sufficiently 

high value of chemical potential. At the same time, strong electric fields will appear in 

real dense medium. They could significantly affect the processes that take place in this 

case. 

In [5, 6], in particular, the exact expression for the temporal element of the one-

photon vertex tensor in dense medium was obtained. This expression determines the 

induced charge density function. In the present paper, we calculate the tensor element in 

magnetic field and finite temperature. 

Calculations show that the presence of magnetic field in dense medium at zero 

temperature suppresses the induced charge by adding the magnetic field strength to the 

mass square in the function argument. Also, the temporal component of the one-photon 

vertex is obtained in an analytical form in the high temperature approximation. We show 

that the tensor element – and the density of the induced charge – is proportional to the 

medium temperature. This important fact means that high temperatures stimulate the 

charging of media. At the same time, the instabilities are suppressed and the medium is 

strongly charged. It could result in new effects. We also detect that at sufficiently high 

temperature the charging starts at not dense media, 0≅µ . In this case, the magnetic field 

strength determines the required temperature at which the induced charge arises. 

The charging of dense medium is an important phenomenon affecting different 

processes. The presence of a charge can change the scattering parameters of the particles 

and cause the creation of new particles – primarily wide variety of photons, but with a 

sufficiently strong charge – massive particles, too. Moreover, the presence of the induced 

charge will be an observable explicit signal of the dense medium appearance. Magnetic 

field strength sets the temperature of the medium, at which charging takes place. The 

strong spatially alternating potential is generated in the plate at sufficiently high 

temperature. 
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