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The electron temperature and velocity relaxation of completely ionized plasma is studied on the basis 

of kinetic equation obtained from the Landau equation in a generalized Lorentz model. In this model 

contrary to the standard one ions form an equilibrium subsystem. Relaxation processes in the system are 

studied on the basis of spectral theory of the collision integral operator. This leads to an exact theory of 

relaxation processes of component temperatures and velocities equalizing. The relation of the developed 

theory with the Bogolyubov method of the reduced description of nonequilibrium systems is established, 

because the theory contains a proof of the relevant functional hypothesis, the idea of which is the basis of 

the Bogolyubov method. The temperature and velocity relaxation coefficients as eigenvalues of the collision 

integral operator are calculated by the method of truncated expansion of its eigenfunctions in the Sonine 

orthogonal polynomials. The coefficients are found in one- and two-polynomial approximation. As one can 

expect, convergence of this expansion is slow. 
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1. Introduction 

This paper is devoted to the study of relaxation processes in completely ionized plasma. 

The plasma is considered in the generalized Lorentz model, in which the ion subsystem is 

assumed to be in equilibrium. The model is based on the Landau kinetic equation [1]. 

For the first time the problem of equalizing the component temperatures in a system was 

considered by Landau [1] (the velocity relaxation was studied analogously in [2]). His 

research was based on the mentioned kinetic equation [1] (see also [3]). In his investigation 

he assumed without proof that the plasma components quickly become equilibrium and are 

described by the Maxwell distribution functions. A related problem in polaron theory was 

considered by Bogolyubov and Bogolyubov (Jr.) in book [4] where solution of the kinetic 

equation for a polaron were discussed with the same assumption about the Maxwell 

distribution. Our paper avoids this assumption. 

Contrary to our papers [5–7], which are based on the Bogolyubov reduced description 

method [8] (see also a review in book [3]), the present paper develops kinetics of the system 

through elaborating the spectral theory of the collision integral operator.   

The paper is constructed as it follows. In the Section 2 the generalized Lorentz model is 

formulated following to [7]. The Section 3 discusses the spectral theory of the collision 

integral operator which is used to solve the kinetic equation of the theory. The Section 4 

describes the method of truncated expansion in the Sonine polynomials for the spectral 

problem solution. Section 5 presents calculation of the relaxation coefficients in one- and two-

polynomial approximation. 

2. The generalized Lorentz model of plasma 

Completely ionized electron-ion plasma is investigated. The Landau kinetic equation 

lies in the basis of our consideration (see, for example, [1, 3]). It is assumed that ions form an 

equilibrium system in a state of rest with temperature 0T  which are described by the Maxwell 

distribution 
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( 0n  is ion density, M is an ion mass). Moreover, here ion-ion and electron-electron 

interactions are neglected. So, the investigation is based on the generalized Lorentz model 

[7]. Electron distribution function is denoted here by ( , )pf x t  and is normalized by the 

condition 

3
( , ) ( , )pd pf x t n x t=  (2) 

where ( , )n x t  is density of number of electrons. The kinetic equation for this function 

takes the form 

( , ) ( (
( , )

, ))
pn
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n
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∂
∂ = − +

∂
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where the ion-electron collision integral is given by the formula [7] 

0

( ) ( )
p l

p nl p

n l

f p
I f D p f

p p mT

 ∂ ∂
= +   ∂ ∂  

 (4) 

with function ( )nlD p defined by the formula 

3( )nl ip nl

p p
D p C d p w S

m M
′
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2C e z L≡ π  (5) 

( m  is an electron mass, ez  is an ion charge, L  is the Coulomb logarithm) where 

2 3( ) ( ) /nl nl n lu u u u uS δ≡ − . (6) 

Equilibrium electron distribution function pf  is given by the Maxwell distribution 

eq
p pf w= , 
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The function ( )nlD p  defined in (5) has a fairly simple structure, which simplifies 

our further research. In particular, it has a simple dependence on dimensional quantities. 

This allows finding out the structure of dependence on the dimensional values of all 

objects of the theory. 

3. Dynamics of spatially uniform states of plasma 

In this paper we will limit ourselves to research of spatially uniform states of the 

system, for which distribution function ( , )pf x t  does not depend on coordinates
nx .  Let 

us introduce collision operator K̂  by the definition 

ˆ( f ) fp p pI w w K= −  (8) 
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( f p  is an arbitrary function). It is symmetric and positively defined one at the definition of 

a scalar product by the formula 

3

1 2 1 2(f ,f ) f fp p pd pw=  . (9) 

Therefore its eigenfunctions ipg  and the corresponding eigenvalues 
iλ  

ˆ
ip i ipKg g= λ  (10) 

have the properties 

0iλ > ,      ( , )i i i iig g bδ′ ′≡  (11) 

( ib  are some values). Note, that the spectral theory of the collision integral operator K̂  is 

used too in our paper [9] for the investigation of electron mobility in plasma and in paper 

[10] for the polaron theory in semiconductors. 

Let us find a solution of (3) in the form  

(1 )p p pf w g= + . (12) 

The function pg  is normalized by the definition 

0pg  =  (13) 

where the average value notation with the distribution 
pw  is introduced 

3
f fp p pd pw  =  . (14) 

Kinetic equation (3) takes the form  

ˆ
t p pg Kg∂ = −  (15) 

and can be solved in terms of eigenfunctions 
ipg  and eigenvalues iλ  of the operator K̂  

i
p i ip

i

t
g c g e

−λ
=  (16) 

with some coefficients defined by the initial condition for the distribution function 

0( 0)p pf t f= ≡ . Eigenvalues iλ  define relaxation times 1
i i

−τ ≡ λ  of the system. According 

to (13) and (16), average values of the eigenfunctions are equal to zero 

0ipg  = . (17) 

Let us study the evolution of the electron subsystem in terms of momentum nπ  and 

energy ε  densities 

3
n p n p nd pf p g pπ ≡ =   ,       3

0p p p pd p f gε ≡ ε =  ε  + ε ,     
0 0

3

2
nTε ≡ . (18) 

Among eigenfunctions ipg  there are vector p nA p  and scalar pB  ones with the 

corresponding eigenvalues uλ , Tλ  
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ˆ
p l u p lKA p A p= λ ,  ˆ

p T pKB B= λ  (19) 

i.e. pA , pB  are scalar functions of p . Quantities pA , pB  are defined by (19) with an 

accuracy up to arbitrary factors. Let us choose additional conditions for equations (19) to 

eliminate this uncertainty 

3 / 2p pA n ε  = ,         3 / 2p pB n ε  = ,           0pB  =      (20) 

(the last relation is added according to (17)). Therefore expression (16) for pg  can be 

rewritten in the form 

u iT
p n p n p i i p

i

t tt
g c A p e cB e c g e ′− −−

′ ′
′

λ λλ= + +  (21) 

where subs i′  enumerate other eigenfunctions and eigenvalues. 

Let us assume that relaxation times of the system satisfy the condition that some 

time 
0τ  exits with the property 

0,T u i′>> >τ τ τ τ . (22) 

Then relation (21) at 
0t >> τ  takes the form 

0

( ) u T
p p n p n pt

tt
g g c A p e cB e

+

>>τ

−λ−λ→ ≡ + . (23) 

According to (18), (20) at these times momentum 
nπ  and energy ε  densities are given by 

relations 

0

( ) u
n n nt

t
mnc e

−+

>>τ

λπ →π ≡ ,          
0

( )
0

3

2
T

t

tn
ce

−+

>>τ

λε →ε ≡ + ε  (24) 

and therefore asymptotic function ( )
pg
+  can be written in the form 

( ) ( ) ( )
0/ ( ) 2 / 3p n p n pg A p mn B n

+ + +≡ π + ε − ε . (25) 

Variables ( )+ε , ( )
n
+π  satisfy the time equations 

( ) ( )

0( )t T

+ +∂ ε = −λ ε − ε ,     ( ) ( )

t n u n

+ +∂ π = −λ π  (26) 

and describe relaxation processes in the electron subsystem. Let us introduce as 

observable variables instead of ( )+ε , ( )
n
+π  electron subsystem temperature T  and mass 

velocity 
nu  

( ) 2(3 ) / 2nT mnu
+ε = + ,     ( )

n nmnu
+π = . (27) 

These variables satisfy the relaxation equations 

t n u nu u∂ = −λ ,      2
0( ) (2 ) / 3t T u TT T T mu∂ = −λ − + λ − λ  (28) 

and asymptotic electron distribution function takes the form 

( ) 2

0( / 3)p n p n pg u A p T T mu B
+ = + − + . (29) 
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In fact this formula expresses the idea of the Bogolyubov functional hypothesis [8] that is 

the basis of his method of the reduced description of nonequilibrium processes (see a 

review in [3]). So, the theory developed in the present paper contains a proof of this 

hypothesis for the case under consideration.  

4. Method of the truncated expansion in the Sonine polynomials  

for spectral problem solution 

Here at approximate solution of equations (19) by an expansion in orthogonal 

polynomials the Sonine polynomials ( )qS x
α  ( 0,1,2,...q = , α  is a real number) are used 

(see, for example, [6, 7, 9]). Let us find the functions pA , pB in the form of expansions 

3/2

0

( )p q q p

q

A a S
∞

=

= βε ,  1/2

0

( )p q q p

q

B b S
∞

=

= βε       ( 1
0T
−β ≡ ). (30) 

The equations for the coefficients qa  and qb  are found by the next way. Substituting the 

expansions (30) into equations (19), multiplying them by 3/2( )l q pp S βε  and 1/2( )q pS βε , 

correspondingly, and taking the average value with the distribution function pw  in the 

both sides gives 

0

qq q u q q

q

A a a x
∞

′ ′
′=

= λ ,  
0

qq q T q q

q

B b b y
∞

′ ′
′=

= λ . (31) 

Here the notations 

 3/2 3/2{ ( ), ( )}qq l q p l q pA p S p S′ ′= βε βε , 1/2 1/2{ ( ), ( )}qq q p q pB S S′ ′= βε βε  
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(32) 

are introduced and the bilinear forms (brackets) defined by the formula [7] 

1 23 3
1 2 1 2

f f
ˆ{f ,f } f f ( )

p p

p p p p p p nl

n l

d pw K d pw D p
p p

∂ ∂
= =

∂ ∂   (33) 

are used ( 1f p  and 2f p  are arbitrary functions).  

Additional conditions (20) give the contributions of the first polynomials to 

expansion (30) 

0a = β ;        0 0b = ,       1b = −β . (34) 

We will say that the solutions of equations (31) are calculated in the s -polynomial 

approximation if all the coefficients of the expansions (30) starting from ( 1s + )-th are 

assumed to be zero: 1[ ] 0s
qa =  ( 0,1,2,...q = ) at q s≥ ,  1[ ] 0s

qb =  ( 1,2,...q = ) at 1q s≥ +  and 

[ ]
0
s

a = β , [ ]
1

s
b = −β  ( 1,2,...s = ). Hereafter index s  at a quantity [ ]s

a  indicates the number 

of polynomials used in the considered approximation. At the same time the obtained from 

(31) equations give the corresponding expressions [ ]s
uλ , [ ]s

Tλ  for relaxation coefficients.  

The calculations in the one- and two-polynomial approximations give [7] 
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[1]
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u
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A A A A A

x x x x
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1
( ) [( ) 4 )]

2
T

y y y
B B B B B

y y y y
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 
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(35) 

Coefficients [2]
uλ , [2]

Tλ  satisfy quadratic equations and in (35) the smallest roots of this 

equations are given which define the slowest evolution of the system.  

A detailed analysis of the next many-polynomial approximations is very 

cumbersome and can be conducted in some limiting cases [11].  

5. Calculation of the relaxation coefficients uλ , Tλ  

in one- and two-polynomial approximation 

According to (32) we have to calculate the following functions qqA ′  and  qqB ′  

00 { , }l lA p p= ,       01

5
{ , } { , }

2
l l l p lA p p p p= −β ε ,  

2
11

25
{ , } 5 { , } { , }

4
l l l p l p l p lA p p p p p p= − β ε + β ε ε ; 

2
11 { , }p pB = β ε ε ,    3 2 2

12

1 5
{ , } { , }

2 2
p p p pB = − β ε ε + β ε ε ,  

4 2 2 3 2 2
22

1 5 25
{ , } { , } { , }

4 2 4
p p p p p pB = β ε ε − β ε ε + β ε ε . 

(36) 

In our paper [7] the formula for calculation of the brackets (33) was obtained 

1/2
0
2 1/2

1/2
3 30

2 1/2 1/2
( )0 ( )
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{ , } ( )
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c
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p p c q nl
mTn l p q

q

q

a bnn m C
a b d q d qw w S q

p pT
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+µ

∂ ∂
=

∂ ∂+ µ   (37) 

where 

2

2
3/2

1

(2 )

q

qw e
−

≡
π

,     
1/2

m

M

 
µ ≡  

 
. (38) 

At calculation of the brackets with the formula (37) is convenient at first to take integrals 

over cnq  and then ones over nq . By this way we obtain 

0
2 1/2

{ , }
(1 )

s s

mnT
p p = λ

+ µ
,        

2 2
0

2 3/2

(1 4 )
{ , }

2(1 )
s p s

mnT
p p

+ µ
ε = λ

+ µ
,    

3 4 2
0

2 5/2

(55 36 8)
{ , }

4(1 )
p s p s

mnT
p p

µ + µ +
ε ε = λ

+ µ
;     

2 2
0

2 3/2
{ , }

(1 )
p p

nT µ
ε ε = λ

+ µ
, 

 

(39) 
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3 2 2
2 0

2 5/2

(5 2)
{ , }

(1 )
p p

nT µ µ +
ε ε = λ

+ µ
,      

4 2 4 2
2 2 0

2 7/2

(35 28 8)
{ , }

(1 )
p p

nT µ µ + µ +
ε ε = λ

+ µ
 

where 

3/2
0

1/2 1/2 3/2
0

2n C

m T
≡λ

π
. (40) 

In two-polynomial approximation relations (39) give a very cumbersome results. 

Therefore, here the relaxation constants Tλ  and uλ  are calculated at 1µ =  that 

corresponds to the physical sense of  1/2( / )m Mµ =  where m  and M  are electron and 

ion masses. Therefore, all values in (36) are taken with the same accuracy only in the first 

two approximations 

2
00 0

1
(1 )

2
A mnT≈ λ − µ ,    2

01 0

5
2(1 )

4
A mnT≈ λ − µ ,     2

11 0

1 43
(23 )

4 2
A mT≈ λ − µ , 

2 2
11

3
(1 )

2
B n≈ λ µ − µ ,     2 2

12

3 5
(1 )

2 2
B n≈ λ µ + µ ,     2 2

22

1 75
(13 )

4 2
B n≈ λ µ − µ . 

(41) 

Using formulas (35) gives the relaxation coefficients Tλ  and uλ  in one- and two-

polynomial approximations with the corresponding accuracy  

[1] 21 1
(1 )

3 2
uλ ≈ λ − µ ,         [1] 2 22 3

(1 )
3 2

Tλ ≈ λµ − µ ; 

[2] 1/2 2 2

1/2

1 1 2029 1
[(33 809 ) ( 53 ) ] (0,076 0,153 )

4 2 15809
uλ ≈ λ − + − + µ ≈ λ + µ , 

[2] 2 1/2 2 2 2

1/2

1 45 345 4
[ (9 61 ) ( ) ] (0,484 14,0 )
2 4 1561

Tλ ≈ λµ − + − + µ ≈ λµ + µ  

(45) 

These formulas allow comparing of both approximations 

[2] [1]
2

[1]
0,77 0,83u u

u

λ − λ
≈ − + µ

λ
,       

[2] [1]
2

[1]
0,484 14,0T T

T

λ − λ
≈ − + µ

λ
 (55) 

This result shows that the convergence of the method of expansion in orthogonal Sonine 

polynomials used by us is at least very slow. There is no argument to expect the 

convergence of the procedure for the spectral problem because the problem is equivalent 

to solving the Fredholm integral equation of the second kind (see, for example, [12]).  

6. Conclusions 

The paper investigates completely ionized plasma in the generalized Lorentz model, 

which considers the system of ions to be equilibrium one and neglect electron-electron 

and ion-ion interactions. Component temperature and velocity relaxations are studied in 

spatially uniform states of the plasma. The investigation is based on the spectral theory of 

the collision integral operator that is linear one. Relaxation processes are studied without 

assumption that they are near their completion. The tensor dimensionality of the 

eigenfunctions of the collision integral operator determines the sense of parameters that 

describe the plasma evolution. Electron temperature and velocity relaxations are 
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described by scalar and vector eigenfunctions. Relevant spectral problem is related to the 

Fredholm integral equations of the second kind. This problem is solved in the paper by 

the method of truncated expansion of the eigenfunctions in the Sonine orthogonal 

polynomials. The convergence of this method cannot by proved. Therefore, we calculate 

relaxation coefficients (eigenfunctions) in one- and two-polynomial approximations and 

compare them. To avoid cumbersome calculations our investigation is conducted in the 

limit of small electron-to-ion mass ratio with accuracy up to the first order after the 

leading contribution included.  In is shown that the convergence of the expansion in the 

Sonine polynomials is at least very slow. 
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