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Nowadays, no dark matter candidates have been discovered. We consider the possible reason for that 

which is related to the approach of on-peak resonance searching for. As is believed usually, a new particle 

has small width and a narrow width approximation is applicable to identify such type resonant peak in the 

invariant mass spectrum of collision products. 

In the present paper, in the framework of the generalized Yukawa model, we find out the properties 

of the searched particle when its width is larger than a maximal one expected during experiments and so 

this state could be missed as a noise. Usually, the new particle width is considered as an arbitrary 

parameter. Here, we obtain the width of the dark matter particle from an imaginary part of polarization 

operators. Then the width is analyzed as explicit function of the couplings and masses in the underlying 

model of the dark matter. The corresponding constraints on the model parameters are obtained. Role of the 

one-loop mixing of visible and dark matter fields is investigated and constraint on the mixing angle value is 

derived. These estimations are quite general and, in particular, relevant to interactions between the 

particles of the Standard model and dark matter.  
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1. Introduction 

Nowadays, no particles-candidates for dark matter (DM) have been found, yet. There is 

a long list of such particles entering different models relevant to various energy scales. In 

what follows, we consider why it could be so within the standard treating of scattering 

experiment data. It is usually assumed that resonances of the unknown particles are narrow 

ones and their typical width Γ is about 1-3% of the peak's mass M, so Γ ≪ M. This 

assumption allows us to apply the NWA to discover the resonances in the total cross-section. 

In this approach, the interference between visible and dark particles could be neglected in the 

total cross section. At the same time, in the literature there are many models beyond the 

Standard model (SM), which anticipate new particles to have big widths of resonances. 

However, such type states can be missed as a noise if they appear in experimental data. In this 

paper we analyze how the widths of new physics peaks depend on masses and couplings 

introduced in some underlying model of the DM. This research is also motivated by [1], 

where constraints on the model parameters of the hypothetical Z’ boson are considered. It is 

found there that a small mixing angle between the SM Z boson and Z’ allows the latter to 

have the width of up to 100% of its mass. Similarly, if the dark matter particle has small 

mixing with the visible matter, its resonance could also be wide, without any effect on the 

properties of visible matter. We are interested in the model when the dark particle acquires a 

large width. 

For that we introduce the generalized Yukawa model. DM is presented as the heavy 

Dirac fermion Ψ and scalar χ fields. Visible matter is presented as the light scalar field φ and 

the doublet of light fermions ψ1 and ψ2. The latter two interact with bosons φ and χ through 

different Yukawa’s couplings. Using this model, we obtain the width of dark boson χ for 

certain values of the model parameters. Such approach is different from that used in some 

non-NWA peak investigations presented in, for instance, [2, 3, 4]. In these papers the width 

of the new particle is adopted to be an arbitrary free parameter. In our research, we obtain the 

explicit analytic expression for the width of the dark particle, as a function of model 

couplings and masses. 
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There exist numerous models of DM such as SUSY particles (neutralinos) [5], 

neutral Z’ bosons [6, 7, 8], sterile neutrinos [9], etc. In these models, it is assumed that 

the DM candidate has a certain group of symmetry or specified couplings to other fields. 

On the contrary, we consider all the parameters of DM as free, and do not limit our 

treatment by a certain gauge group. 

Below we are concentrating on the analysis of the particle parameter values for 

which the dark resonance becomes invisible in the direct search for it. Then we derive 

necessary constraints on the properties of the DM sector. 

The paper is organized as follows. In next section we introduce our model and 

discuss the radiation corrections to the boson masses, alongside with the mixing of scalar 

fields, which appears at one-loop level. In sect. 3 we define the corresponding mixing 

angle. In sect. 4, we consider the width of the dark particle resonance and its analytical 

properties as the function of model parameters. Then we estimate the values of the 

parameters when this width exceeds the search limits, and provide the limitations for the 

mixing angle. We summarize our results in the context of comparisons with a number of 

DM models in the last section. 

2. Radiation corrections to the boson masses 

We start with the Lagrangian 

 

(1) 

Dark fermions Ψ, having the coupling Gχ to scalars in the dark sector, do not interact 

with visible bosons φ. The visible fermions are coupled to both visible and dark scalars. 

The fields φ and χ acquire their widths through the radiation corrections giving 

imaginary parts to their masses. Such corrections appear due to the interactions of scalars 

with themselves and the fermions. The loop corrections for the field φ we denote as 

Πφφ(p2), where p2 is the squared momentum transferred through the loop. Similarly, 

corrections for the field χ are denoted as Πχχ(p2). Diagrams contributing to the Πφφ(p2) and 

Πχχ(p2) are shown in Figs. 1 and 2, respectively. There is also the diagram of scalar field 

mixing which contribution is denoted as Πφχ(p2) and shown in Fig. 3. 

   

Fig. 1. Loop corrections contributing to Πφφ(p2). 

 

   

Fig. 2. Loop corrections contributing to Πχχ(p2). 
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Fig. 3. The loop correction contributing to Πφχ(p2). 

The definitions of the two-point Green functions of the scalar fields in the 

Heisenberg representation read: 

 

(2) 

From the Schwinger-Dyson equation, Green functions in Eq. (2) are expressed 

through geometric series of one-particle irreducible diagrams. Due to the one-loop mixing 

effect, the Schwinger-Dyson equation is actually a matrix expression. In the Fourier 

representation, the Green functions read (momentum arguments are omitted for brevity): 

 

(3) 

In this equation, Dφ(p2) and Dχ(p2) are the propagators of the free scalar fields. 

Functions Πφφ(p2), Πχχ(p2) and Πφχ(p2) are components of the vacuum polarization 

operator Π(p2): 

. 

(4) 

We perform calculation in a renormalized perturbation theory, and the polarization 

operator components are renormalized by the counter terms in eq. (5). These counter 

terms cancel divergences in the components of Π(p2) from the vacuum polarization 

diagrams in Figs. 1, 2, 3: 

 

(5) 

In eq. (5) the superscript (fin) denotes a renormalized polarization operator. 

Hereafter we omit this superscript, considering only finite parts of the polarization 

operator components. To regularize loop integrals a dimensional regularization is used. 

The diverging parts of the integrals are subtracted according to the  scheme. The 

counter terms in eq. (5) are chosen to fulfill the renormalization conditions: 

 (6) 
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Hence, μ2 and Λ2 are the real parts of the poles of the Green functions matrix in the 

set (3). Parameter κ2 is chosen arbitrarily, to renormalize the one-loop mixing diagram in 

Fig. 3. According to the conditions (6), scalar loop contributions into Πφφ(p2) and Πχχ(p2) 

are completely absorbed by the counter terms.  

3. Width of DM particles 

In the on-resonance searches, the new particle is identified with the resonant peak in 

the cross-section of some scattering process. The resonance position coincides with the 

mass.  

Width of χ particle is defined by the imaginary part of its polarization operator 

Πχχ(p2) taken at the point p2 = Λ2. Here p2 is the squared momentum transferred through 

the virtual boson state. Πχχ(p2) is calculated analytically, and its imaginary part is 

 

(7) 

Hence, the width ρ of the χ resonance, as a fraction of mass Λ equals: 

 

(8) 

Below we plot ρ as the function of variables gχ, Gχ and Λ, in Figs. 4 and 5. The plots 

are contour maps of the χ widths with the specific contour highlighted by the solid dashed 

line, at which ρ = 3 %. This contour separates the areas in the parametric space, where ρ 

< 3 % (narrow peaks) and where ρ > 3 % (wide peaks). Narrow resonances are potentially 

visible in the experiment. In all these figures the parameter M is taken to be the same    

(M ≈ 2 ⋅ 103 m1). 

  

Fig. 4. Contour maps of dark boson widths in the parametric space Λ- gχ, with fixed Gχ. Labels 

describe regions with the appropriate widths values. 

From graphs in Figs. 4 and 5 we identify, whether the resonance is wide or narrow, 

for the given values of the model parameters. 
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As we can see from the second graph in Fig. 4, if the new boson interacts 

sufficiently strong with other particles inside the dark sector, the formation of new narrow 

resonance is rather exclusive than typical. Namely, this is so when the new particle is 

lighter than the known one. For example, in Fig. 4, in the second graph, for gχ ≈ gφ, we 

have that resonance is narrow until Λ ≲ 0,5μ. Such boson is easily detectable. So that it 

can be rejected. For Gχ ≫ gφ we find that if new particle is heavier than the visible one, its 

peak has to be wide. Contrary to this, if χ and Ψ interact weakly, the new peak is narrow 

one in a wide range of its mass and for coupling gχ ≈ gφ. In the latter case, if Λ ≤ μ, the 

dark peaks are narrow for almost whole range of Gχ variation (Fig. 5). But if gχ ≫ gφ all 

dark resonances are wide states. As we can see from the last graph in Fig. 5, the narrow 

peaks do not exist in that case. Hence, the DM should have sufficiently strong interaction 

inside the dark sector or with the visible matter, to produce wide resonance. Finally, to 

keep the wide dark resonance, there has to be Λ > μ and either gχ ≫ gφ or Gχ ≫ gφ. 

According to the results of the modern experiments, new hypothetical bosons 

beyond the Standard model do not change properties of known resonances [8]. It is so if 

the masses of two resonances are far enough one from another, and they do not intersect. 

Hence, the found condition Λ > μ is particularly important - if it is not satisfied, the dark 

particle would be detected. 

   

Fig. 5. Contour maps of dark boson widths in the parametric space Λ - Gχ, with fixed gχ. Labels 

describe regions with the appropriate widths values. 

To summarize, we have investigated the influence of the mass M of dark fermion on 

the χ-particle width. It is worth noting that the existence of additional fermions beyond 

the visible sector is not obligatory. This is because only the properties of the dark boson 

particle are under consideration. Nevertheless, the condition of wide χ resonance sets 

certain restrictions on the Ψ-field mass. It was found that when mass M is increased the 

DM peak is narrowing. Hence, to keep the width of χ bigger than 3 %, we anticipate dark 

fermions to have the mass values in the scale of visible ones. The estimate of the M upper 

bound is, M ≤ 103-104 m1. We also note that visible fermions were considered to be light 

enough to contribute the boson widths, so that 2m1;2 ≪ Λ. 

4. Discussion and conclusion 

Above we show how the DM particle acquires its width through the interaction with 

other fields of the model. Analytically its resonance width depends on the contributions 

from the interactions with the model fermions. These contributions are defined both by 

the corresponding Yukawa couplings and mass of the resonance. The self-interaction of 

bosons does not affect its width, being canceled in the renormalization procedure. These 

results are general and do not depend on the transformation properties of the dark boson 

field. 



M.S. Dmytriiev, V.V. Skalozub 

8 

In the previous section we have analyzed the role of values of the particle couplings 

and the masses resulting in the creation of wide resonances in scattering processes. Such 

type resonances could not be detected by the standard methods of direct searches of the 

resonances which have ρ < 3 %. To realize that, we divided the fields into "visible" and 

"dark" ones and considered various scenarios ensuring the DM boson gains a large 

resonance width in the invariant mass spectrum of final states. It turns out that the limit of 

3 % can be exceeded in many cases. In the framework of our model, the conditions for 

that are the following: 

1. DM particle is heavier than the visible one - Λ > μ 

2. Interactions in the visible sector are weaker than that of between the dark and 

visible particle or between the particles in the dark sector, only. That is, if either 

gχ ≫ gφ or Gχ ≫ gφ. 

It also can be shown that wide resonances correspond to the small mixing between 

dark and visible fields. We find that the mixing angle obtained from the bosonic mass 

matrix in the effective potential of scalars has to be less than 10-5. The presence of this 

upper limit is qualitatively important. If the mixing angle is small, dark boson resonance 

also does not affect the visible sector properties. 

The considered Yukawa model gives a possibility for analyzing the role of the 

masses and couplings of particles. Other aspects of the problem such as group symmetry 

of the extended model and, hence, the content of the states remain behind it. However, we 

have obtained the set of conditions which have to be taken into account when searches for 

the DM particles are carried out. In general, to avoid the problem of wide resonance states 

we have to apply additionally non-resonant methods to detect these new states of matter. 

Among them, the interference of dark and visible states should be taken into 

consideration at energies far from resonance peak. Different types of the effective 

Lagrangians could be derived to describe interactions between two worlds. These are 

problems left for the future. 
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