
ISSN 2616-8685. JOURNAL OF PHYSICS AND ELECTRONICS Vol. 28(1), 2020. DOI 10.15421/332003 

17 

RELAXATION PHENOMENA IN ELECTRON PLASMA  

OF SEMICONDUCTORS 

S.A. Sokolovsky1, A.I. Sokolovsky2, O.A. Hrinishyn2 

1 Prydniprovska State Academy of Civil Engineering and Architecture, Dnipro, Ukraine 
2 Oles Honchar Dnipro National University, Dnipro, Ukraine 

e-mail: alexander.i.sokolovsky@gmail.com 

The hydrodynamics of the electron subsystems of semiconductors is studied in the approximations of 

the ideal and real liquid, taking into account processes of relaxation of temperatures and macroscopic 

velocities of electrons and phonons without assuming the local equilibrium of the system. A set of integral 

equations for the electron distribution function of the first order in gradients is obtained, which determines 

the sources in the hydrodynamic equations of the ideal liquid approximation and the dissipative flows of 

energy and momentum of electrons. The steady states of the system in the ideal liquid approximation are 

investigated. The exact formulas for the electron mobility of the semiconductor and its conductivity are 

derived and kinetic coefficients that determine current in a spatially inhomogeneous state are calculated. In 

the presence of an electric field, the phenomenon of difference of temperatures of the electron and phonon 

subsystems is predicted. The obtained expressions are specified for the case of temperatures much higher 

the Debye temperature.  
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1. Introduction 

This work continues the investigation of hydrodynamic states in the presence of 

relaxation processes of temperatures and velocities equalization in the system. This problem 

deserves attention, which is noted, for example, in the review [1]. In [2], we developed the 

general theory of hydrodynamic states of a polar semiconductor in the Bloch model, in which 

it is assumed that nonequilibrium electron subsystem interacts  with the equilibrium phonon 

subsystem  (its temperature 0T  ). The study is based on Bogolyubov’s linear kinetic equation 

[3] for the electron distribution function, which takes into account the interaction of electrons 

with optical phonons in the Fröhlich model in the presence of a small homogeneous external 

electric field and considers the electron system as a rarefied one. 

The theory of hydrodynamic states is always based on the kinetics of spatially 

homogeneous states of the system. The kinetics of relaxation processes in such states is 

complicated by the fact that in their theory there is no small parameter [4] and the 

corresponding distribution function of the system  
(0)f p  (it is the main approximation when 

describing hydrodynamic states) is unknown. Usually in theory it is assumed [4] that a local 

equilibrium is quickly established in the electron subsystem. This means that the distribution 

function  
(0)f p  is given by the formula   

(0)f ( )p p muw T−= , where T  and lu  are the temperature 

and macroscopic velocity of the electron subsystem. However, only the Maxwell distribution 

without velocity and with phonon temperature 0( )p pw T w  is a solution of the kinetic 

equation. In fact, under this assumption, one investigates states in the vicinity of the local 

equilibrium that do not arise in natural evolution. 

In our previous paper [5] in the study of the electron-ion plasma in the generalized 

Lorentz model an exact expression was found for the distribution function in terms of the 

eigenfunctions of the collision integral operator. In paper [2] this consideration was extended 

to the case of the electron-phonon plasma of semiconductors, which posed the problem of 

constructing the hydrodynamics of this system that is considered here. 
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The paper is constructed as it follows. Section 2 describes our approach to 

constructing the theory of hydrodynamic states of semiconductors and presents the results 

of deriving the equations of hydrodynamics of the ideal liquid approximation taking into 

account relaxation processes. Section 3 discusses hydrodynamics in the real liquid 

approximation. Section 4 considers the steady states of the system in the ideal liquid 

approximation and discusses some of the observed phenomena. 

2. Hydrodynamic states in an ideal liquid approximation 

This investigation is based on the reduced description of the hydrodynamic states of 

semiconductors by densities of energy ( , )x t , momentum ( , )l x t  and electron mass 

( , ) ( , )x t mn x t   (in short notation by parameters ( , )x t ) [2]. These quantities satisfy 

time equations, which differ from the corresponding conservation laws in differential 

form by the presence of sources associated with the interaction of electrons with phonons 

and an external homogeneous electric field. The study is based on the idea of 

Bogolyubov’s functional hypothesis, which introduces the electron distribution function 

f ( , ( ))p x t  as a functional of parameters ( , )x t  after the passage of free path time. The 

integrо-differential equation for the functional f ( , )p x   (kinetic equation at the reduced 

description) is derived in the usual way and is supplemented by the definition of the 

parameters ( )x  (by additional conditions). At the same time, the structure of the time 

equation for the parameters ( , )x t  is recognized in terms of f ( , )p x   

( , )
( ,f ( ( )))p

x t
L x t

t





= 


. (1) 

The kinetic equation at the reduced description for the functional f ( , )p x   is solved (as 

usual in the development of hydrodynamics) in the theory of perturbations in small 

gradients of parameters ( )x  (small parameter g ). The electric field is considered to be 

of the first order of smallness in g . Contributions of the s -th order in gradients to the 

quantities f ( , )p x   and ( ,f ( ))pL x    are denoted as 
( )f s
p  and 

( ) ( )( / )s sL t    . 

As noted, the contribution of the main approximation 
(0)f p  to the distribution 

function is determined by the eigenvectors of the collision integral operator [2] 

(0) (0)f (1 )p p pw g= + ,     (0)

0

2 1
( )

3
p p p n ng A B p

n mn
 − +  . (2) 

The required scalar pA  and vector l pp B  eigenfunctions and the corresponding 

eigenvalues are determined by formulas 

p T pA A=K  ,     p l u p lB p B p=K            ( 0pA  = ) 

3 / 2p pA n  = ,    3 / 2p pB n  =  

(3) 

( pa  is the average value of a quantity pa  with the Maxwell distribution pw ; the last line 

in (3) normalizes the eigenfunctions). The distribution function 
(0)f p determines the energy 

(0)
lq and momentum fluxes (0)

nlt  in the main in gradients approximation 
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(0) 22

3
l p p lq B=  


,       (0) 2

3
nl nlt =   (4) 

and equations of hydrodynamics of the main and first in gradients approximation [2] 

(0)

0( )T
t

 
= − − 

 
,           

(0)

l
u l

t

 
= −  

 
; 

(1)

2 (1)2 1
{ , }

3

l
p p l l p p

l

B F g
t x m

  
= −   +  −  

   
,           

(1)

(1)2 1
{ , }

3

l
l l p

l

F p g
t x m

  
= − +  − 

  
,        l

lt x


= −

 
 

(5) 

( n nF eE − ; e  is modulus of charge of an electron). Here the contribution of the first 

order in gradients (1)f p  to the distribution function f ( , )p x   is determined by the formula 

(1) (1)f p p pw g= . In addition, (5) uses the quantities of the type { , }p p p pa b a b  K  which 

introduces a symmetrical and positively defined bilinear form { , }p pa b . Contributions to 

first-order hydrodynamic equations that contain the function 
(1)
pg  are related to the 

electron-phonon interaction and, along with the contributions of the electric field, are 

sources in the laws of conservation of energy and momentum of electrons. 

3. Real liquid approximation 

In our paper [2] the kinetic equation at reduced description was obtained, which is an 

equation for the distribution function f ( , )p x  . In the first in gradients approximation, it 

gives an equation for the first-order contribution (1)f p  

(1) (0)(1) (0)(0) (0) (0) (1) (1)f f f f fp p p p ps s

s s

n

n t t t t t

             
+ + + + +      

               
 

(0) (0)(1) (1) (0) (0)

(1)
f f f f

(f )
p p p ps l

l p p

l s l s s l l

p
F I

x t x t m x p


        
+ + = − − +  
           

 

(6) 

where the following identity was taken into account 

3

( )

( ) ( ) ( ) ( )
( ) ( ( )) ( ) ( ( ))

( ) n n nx

x x b a x
d x a x b x a x b x

x x x x

  


  →

     
   = +   

     
  (7) 

( (f )p pI   is the collision integral). To equation (6) the conditions that define the 

hydrodynamic variables should be added 

3 (1)f 0p pd p  = ,      
3 (1)f 0p ld p p = ,       

3 (1)f 0pd p = . (8) 

The solution of equation (6) together with (8) is sought for reasons of rotational 

invariance in the form 
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(1) (1)f s
p p lp l lp lp slp p p

l l l

n
w C F D G F w g

x x x

  
= + + + = 

   
. (9) 

In this definition the coefficients lpD , lpG , and nlpF ~ 1/ n  whereas lpC  do not depend on 

n , because the Maxwell distribution is proportional to the density and the collision 

integral depends linearly on the distribution function [2]. 

Substitution (9) in (6) with account for (7) gives the relation, which must be an 

identity. The gradients of the hydrodynamic parameters and the electric field are 

independent, so the coefficients at them in the left and right sides of the obtained relation 

must be the same. This gives a set of integral equations for functions lpC , lpD , lpG , and 

nlpF   

21 4 1 1
{ , }

9 2
sl p p p p mmp slA B F

n n mn

 
 +    +   + 

 
 

0

1
( )

slp slp

slp u u s T p s l slp

s

F F
F B p p F

mn

 
+  +   +   −  − =

 
K ; 

2 1
1 { , }

3 2

lp

p l s sp lp T u s

s

G
B p p G G

mn

 
+ +  +   + 

 
 

0

2
( )

3

lp

T l p lp

G
p A G

mn


+   −  − =


K ; 

0

2 1 1
1 { , } ( )

3 2

lp lp

p l s sp u s T l lp

s

D D
B p p D p D

mn mn

  
+ +   +   −  − = 

  
K ; 

0 0 0

0

1 2 1 1 2
( ) [ ( ) / ]

3 3

p p

s s l p l l

l l

A B
p p A p T

n p m p mT mn

  
 −  +  + +  − −  + 

  
 

0

1 1 1
{ , } ( / )

3 3
p l s sp p ls l s s lpB p p C n B p p mT C

mn mn

 
+ − +  −  = 

 
K  

(10) 

Equations (10) show that the functions lpC , lpD , lpG , and nlpF  have the following tensor 

structure 

lp p l p lC C p C = +  ,      lp p lD D p= ,      lp p lG G p= ,        

lsp p ls p lspF F F h =  +          ( 21

3
lsp l s lsh p p p −  ) 

(11)  

where scalar coefficients pC , pC , pD , pG , pF  , and pF  are introduced. Equations for 

them can be written on the basis of equations (10). Note that the calculations, which led 

to equations (10), do not exclude the presence of contributions associated with the 

momentum density l  in the tensor structure of the functions lpC , lpD , lpG , and nlpF . 

Relations (8) with (9) and (11) substituted in them give the following additional 

conditions to equations (10) written in terms of functions pC , pC , pD , pG , pF  , and pF  
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0pC  = ,     0pF   = ;       0p pC   = ,      0p pD   = ,      0p pG   = ;      

0p pC   = ,     0p pF    = . 

(12) 

The calculation of the functions pC , pC , pD , pG , pF  , and pF  will be performed in a 

subsequent paper by the method of their truncated expansion in the Sonine polynomials 

(see an example of such calculations in [6]). 

Using formulas (9) and (11), we obtain expressions for sources in the equations of 

hydrodynamics of the ideal liquid approximation (5) 

(1) 1 1 1
{ , } { , } { , } { , }

3 3 3
l p s p s l s p s s p s

l l

n
p g p C p F p D p p G p

x x

 
= + +

 
, 

(1) 1
{ , } { , }

3

l
p p p p

l

g F
x


 = 


. 

(13) 

Similarly to (4), it is possible to calculate the dissipative fluxes of energy and momentum 

of the system that gives 

(1) 2 2 22

3
l p p l p p p p

l l

n
q C F D G

x x

  
=    +    +    

  
, 

(1) 24 2

15 3

s l m
sl p p sl

l s m

m
t F

x x x

   
=    + −  

   
 

(14) 

(the second formula takes into account the last two relations from (12)). In these 

formulas, the energy  , momentum l  and particle n  densities are considered as 

independent hydrodynamic variables. Formulas (14) describe all dissipative phenomena 

in the system in a laboratory reference frame where the isotropy is broken by the electron 

momentum density l  (or the macroscopic velocity of the electron system lu ), but all the 

kinetic coefficients of the system are scalar. However, with the traditional choice of 

hydrodynamic variables, including temperatureT , velocity lu  and particle density n  

l lmnu = ,           23 1

2 2
nT mnu = +  (15) 

anisotropy is present. 

4. Discussion 

The obtained results can be concretized by an approximate solution of equations (3) 

for eigenfunctions pA , p lB p  and the corresponding eigenvalues T , u  of the collision 

integral operator K , as well as equations (10) for the functions pC , pC , pD , pG , pF  , 

and pF . We have previously considered the problem of calculating eigenfunctions and 

eigenvalues by the method of truncated expansion of eigenfunctions in the Sonine 

orthogonal polynomials ( )nS x  ( 0,1,2,...n = ). Here   is a parameter that defines a 

family of polynomials. The use of these polynomials is due to the fact that the weight 

function in the condition of their orthonormalization is proportional to the Maxwell 
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distribution with an additional power factor 1/2
p
− . In the approximation of one 

polynomial these functions and eigenvalues are given by formulas [7] 

0 2
0

3 1

2
p pA T

T

 
= − 
 
 ,           

0

1
pB

T
= ; 

2
0

2
{ , }

3
T p p

nT
=   ,        

0

1
{ , }

3
u l lp p

mnT
= . 

(16) 

According to (5), (13), and (15), the equations of hydrodynamics of the system in the 
ideal liquid approximation have the structure 

0( ) l
T l l l

l l

u n
enu E a bu

t x x

 
= −  − − + +

  
,         l

lt x


= −

 
. 

2

3

l
u l l l

l l l

T n m u
enE cE d h d

t x x x

    
= −  − + + + + 

    
. 

(17) 

The terms with scalar coefficients a , b , c , d , and h  are related to the contributions of 

the distribution function (1)f p  (9) to the sources given in (13). This distinguishes the 

developed theory from the ordinary hydrodynamics, in which the contribution to the 

distribution function of the first order in a small parameter of the theory (1)f p  determines 

only dissipative processes. According to the definition (15) of temperature T  and 

velocity lu  of the electron subsystem, equation (17) can be rewritten as 

21 1

3

l s
u l l l

s l l l

u nu e T n m u
u E cE d h d

t n x m mn x x x

      
= −  − − + + + +   

       
,              

2
0

1 2
( ) 2

3 3

s s s
T u T

s s s

nu nu uT T m
T T u a

t n x n x n x

   
= − − + + − + + − 

    
    

22
( )

3 3
l l

l l l

T n m u
u cE d h b d

n x x x

   
− + + − + 

   
. 

(18) 

Note that the obtained equations (17) and (18) in the spatially homogeneous state of the 

system and in the absence of the electric field are exact since expression (2) for the 

distribution function of the main approximation 
(0)f p  is exact. In the steady state, 

equations (18) give the velocity of the electron subsystem and the temperature difference 

of the electron and phonon subsystems 

st 1
l l l

u u l l

e T n
u E cE d h

m mn x x

  
= − + + + 

    
, 

st
st st2 st

0

2 2 2
1 ( )

3 3 3

u l
l l

T T l T l l

um a T n
T T u u cE d h b

n x n x x

     
− = − + − + + −         



  
. 

(19) 

(because / /s snu x t  =   ). In expressions (19) for st
lu  and st

0T T−  only the main 

contributions in the small parameter of the theory g  are left, because in deriving 



Relaxation phenomena in electron plasma of semiconductors 

 23 

equations (17) only contributions up to the first order in g  inclusive are taken into 

account. In our work [5], the values st
lu  і st

0T T−  are calculated in a spatially 

homogeneous state and it is proved that the coefficient c  in (17) is equal to zero. The 

confirmation of this result in the approach of the present work requires the solution of the 

last integral equation from (10) with respect to the function pC  taking into account 

formulas (11) and (12) since according to (5) and (13) { , } / 3s p sc e p C p= . This problem 

as well as the solution of all integral equations (10) will be considered in a subsequent 

paper. 

Further a number of obtained results are given, assuming that the coefficient 0c = . 

The first formula from (19) in the spatially homogeneous state gives an expression for the 

mobility of electrons in the system 

st
l lu E − ,          

u

e

m
 =


        ( ( ) / 0lx x  = ). (20) 

The electric current lj  in the steady state of the semiconductor, using the expression for 

the macroscopic velocity st
lu  from (19), is given by the formulas 

l lj neu − ,       st st
l lj neu= − ;      st

l l

l l

T n
j E

x x

  
  − − 

  
, 

2

u

ne

m
 =


,       

u

ed

m
 =


,      

u

eh

m
 =


 

(21) 

where   is the conductivity of the semiconductor,   and   are some kinetic 

coefficients. Note that our expressions for the mobility and conductivity of electrons are 

exact. This can be proved similarly as it was proved in our work for the completely 

ionized plasma in the generalized Lorentz model [5]. 

The second equation (19) allows investigating the temperature distribution of 

electrons in the steady states of the system. For this purpose, it is necessary to substitute 

velocity st
lu  from (19) into this formula. A somewhat cumbersome result is simplified in 

the spatially homogeneous case: 

2
st 2

0 2

(2 )

3

Tu

T u

e
T T E

m

−
− =

 

 
       ( ( ) / 0lx x  = ). (22) 

Note that this expression is exact and can be proved similarly to what is done in our paper 

for the completely ionized plasma in the generalized Lorentz model [5]. The result that 
st 2

0 ~T T E−  was early discussed in paper [8] for the completely ionized plasma on the 

basis of the Boltzmann equation but with a number of assumptions that complicate 

accuracy control. 

Note also, that the calculation of the relaxation coefficients T  and u , based on the 

Bogolyubov kinetic equation, is more complex than one for plasma in the Lorentz model. 

In our approach to the semiconductor theory, calculations of T  and u  at high 

temperatures will be adequate. The corresponding research was carried out in our paper 

[7] where these expressions for T  and u  are obtained from formulas (16) 

1/216
[1 ( )]

3 2
u O−= +


  


,     3/28

[ln (1)]
3 2

T O= +


  


    ( 0/ 1T   h ).  (23) 



S.A. Sokolovsky, A.I. Sokolovsky, O.A. Hrinishyn 

24 

Here   is the characteristic frequency of optical phonons,   is a small Fröhlich constant 

(see explanation after formula (4) in [2]). Temperature 0T  is taken much higher than the 

Debye temperature DT , because ~DT h . As a result, formulas (22) and (23) give 

2 2
st

0 5 2 2

3 1

ln2

e E
T T

m


− =

  
         ( 0/ 1T =  h ). (24) 

It is planned to evaluate the possibility of experimental observation of this phenomenon. 

5. Conclusions 

The development of the theory of hydrodynamic states of the semiconductors with 

account for relaxation of the temperatures and velocities of the electron and phonon 

subsystems is continued starting from our paper [2]. The first order contribution to the 

electron distribution function, which defines dissipative fluxes of energy and momentum 

in the system and sources in hydrodynamic equations of the ideal liquid approximation, is 

investigated. The set of integro-differential equations for this function is obtained. It is 

established that at the reduced description of the system by energy, momentum and mass 

densities its kinetic coefficients are scalar ones in contradiction with isotropy violation by 

momentum density of electron subsystem. Steady states of semiconductors are 

investigated in hydrodynamics of the ideal liquid approximation. Exact expressions for 

the mobility of electrons and conductivity of the system are obtained. An influence of 

spatial inhomogeneities in semiconductor states on electron current is investigated. The 

phenomenon of the difference between electron and phonon temperatures at steady states 

in the presence of electric field is predicted.  
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