Molecular dynamics simulation of the solidification of AlCoCuFeNi high–entropy alloy nanowire

Authors

  • O. I. Kushnerov Oles Honchar Dnipro National University, Dnipro, Ukraine

DOI:

https://doi.org/10.15421/331925

Keywords:

high-entropy alloy, molecular dynamics, structure, nanowire

Abstract

Molecular dynamics simulation of the solidification behavior of AlCoCuFeNi nanowire was carried out basing on the embedded atom potential with different cooling rates (1∙1011 , 1∙1012, and 1∙1013 K/s). To simulate an infinite nanowire, a periodical boundary condition along the nanowire axis direction was applied. The crystallization of the nanowire was characterized by studying the temperature dependence of the potential energy. The adaptive common neighbor analysis (CNA) was performed and the radial distribution function (RDF) was calculated to determine the structure and lattice parameters of phases of the AlCoCuFeNi nanowire. It has been shown that the final structure of investigated nanoparticle changes from amorphous to crystalline with decreasing of the rate of cooling.

Downloads

Published

27-12-2019

Issue

Section

Articles